leetcode:77. 组合

题目来源

题目描述

在这里插入图片描述

class Solution {
public:
    vector<vector<int>> combine(int n, int k) {

    }
};

题目解析

回溯

本题可以抽象为如下树形结构:
在这里插入图片描述

可以看出这颗树,一开始集合是1、2、3、4,从左到右取数,取过的数,不再重复取。

第一次取1、集合变为2、3、4,因为k是2,我们只需要再取一个数就可以了,分别取2、3、4,得到集合[1,2] [1,3] [1,4],以此类推。

每次从集合中选取元素,可选择的范围随选择的进行而收缩,调整可选择的范围

图中可以发现n相当于树的宽度,k相当于树的深度。

那么如何在这个树上进行遍历,然后得到我们想要的结果呢?图中每次搜索到了叶子节点,我们就找到了一个结构,相当于只需要把达到叶子节点的结果收集起来,就可以求得 n个数中k个数的组合集合。

回溯三部曲

(1)返回值和参数

  • 在这里要定义两个全局变量,一个用来存放符号条件单一结果,一个用来存放符号条件结果的集合:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件结果
  • 其实不定义这两个全局遍历也是可以的,把这两个变量放进递归函数的参数里,但函数里参数太多影响可读性,所以定义为全局变量了
  • 函数中移动有两个参数,既然是集合n里面取k个数,然后n和k是两个int型的参数
  • 然后还需要一个参数,为int型变量startIndex,这个参数用来记录本层递归中,集合从哪里开始遍历(集合就是[1,…,n] )。
  • 为什么要有这个startIndex?
    • 每次从集合中选取元素,可选择的范围随着选择的进行而收缩,调整可选择的范围,就是要靠startIndex
    • 从下图中红线部分可以看出,在集合[1,2,3,4]取1之后,下一层递归,就要在[2,3,4]中取数了,那么下一层递归如何知道从[2,3,4]中取数呢,靠的就是startIndex。
    • 所以需要startIndex来记录下一层递归,搜索的起始位置。
      在这里插入图片描述
  • 因此,整体代码如下:
vector<vector<int>> result; // 存放符合条件结果的集合
vector<int> path; // 用来存放符合条件单一结果
void backtracking(int n, int k, int startIndex) 

(2)回溯函数终止条件

  • 什么时候达到所谓的叶子节点了呢?
  • path这个数组的大小如果达到了k,说明我们找到了一个子集大小为k的组合了,在图中path存的就是根节点到叶子节点的路径。如图红色部分:
    在这里插入图片描述
  • 此时用result二维数组,把path保存起来,并终止本层递归。
  • 所以终止条件代码如下:
 if (path.size() == k) {
    result.push_back(path);
    return;
}

(3)单层搜索的过程

  • 回溯法的搜索过程就是一个树形结构的遍历过程,如下图中,可以看出for循环用来横向遍历,递归的过程是纵向遍历
    在这里插入图片描述
  • for循环每次从startIndex开始遍历,然后用path保存取到的节点i
  • 代码如下:
for (int i = startIndex; i <= n; i++) { // 控制树的横向遍历
    path.push_back(i); // 处理节点 
    backtracking(n, k, i + 1); // 递归:控制树的纵向遍历,注意下一层搜索要从i+1开始
    path.pop_back(); // 回溯,撤销处理的节点
}
  • 可以看出backtracking(递归函数)通过不断调用自己一直往深处遍历,总会遇到叶子节点,遇到了叶子节点就要返回。
  • backtracking的下面部分就是回溯的操作了,撤销本次处理的结果。

整体代码如下:

class Solution {
private:
    vector<vector<int>> result; // 存放符合条件结果的集合
    vector<int> path; // 用来存放符合条件结果
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n; i++) {
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1); // 递归
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:
    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};

回溯法模板:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}

小结

  • 组合问题是回溯法解决的经典问题,我们开始的时候给大家列举一个很形象的例子,就是n为100,k为50的话,直接想法就需要50层for循环。
  • 从而引出了回溯法就是解决这种k层for循环嵌套的问题。
  • 然后进一步把回溯法的搜索过程抽象为树形结构,可以直观的看出搜索的过程。
  • 接着用回溯法三部曲,逐步分析了函数参数、终止条件和单层搜索的过程。

剪枝优化

在遍历的过程中有如下代码:

for (int i = startIndex; i <= n; i++) {
    path.push_back(i);
    backtracking(n, k, i + 1);
    path.pop_back();
}

如果for循环选择的起始位置之后的元素个数 已经不足 我们需要的元素个数了,那么就没有必要搜索了。 具体分析:

  • 已经选择的元素个数:path.size();
  • 还需要的元素个数为: k - path.size();
  • 在集合n中至多要从该起始位置 : n - (k - path.size()) + 1,开始遍历

为什么有个+1呢,因为包括起始位置,我们要是一个左闭的集合。

举个例子,n = 4,k = 3, 目前已经选取的元素为0(path.size为0),n - (k - 0) + 1 即 4 - ( 3 - 0) + 1 = 2。

从2开始搜索都是合理的,可以是组合[2, 3, 4]。

所以优化之后的for循环是:

for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) // i为本次搜索的起始位置

优化后整体代码如下:

class Solution {
private:
    vector<vector<int>> result;
    vector<int> path;
    void backtracking(int n, int k, int startIndex) {
        if (path.size() == k) {
            result.push_back(path);
            return;
        }
        for (int i = startIndex; i <= n - (k - path.size()) + 1; i++) { // 优化的地方
            path.push_back(i); // 处理节点
            backtracking(n, k, i + 1);
            path.pop_back(); // 回溯,撤销处理的节点
        }
    }
public:

    vector<vector<int>> combine(int n, int k) {
        backtracking(n, k, 1);
        return result;
    }
};

小结

什么叫做回溯呢?

  • 回溯也叫做回溯搜索发,它是一种搜索的方式。
  • 回溯是递归的副产品,只要有递归就会有回溯。

回溯的效率

不高。因为回溯的本质是穷举,穷举所有可能,然后选出我们想要的答案。如果想要回溯法高效一些,可以剪枝,但是还是改不了回溯法就是穷举的本质。

那么既然回溯法并不高效为什么还要用它呢?因为没得选,一些问题能暴力搜出来就不错了,撑死了再剪枝一下,还没有更高效的解法。

那都什么问题,只能暴力搜索。

回溯法解决的问题

回溯法一般可以解决如下几种问题:

  • 组合问题:N个数里面按照一定规则找出k个数的集合
  • 切割问题:一个字符串按照一定的规则有几种切割方式
  • 子集问题:一个N个数的集合里有多少符合条件的子集
  • 排列问题:N个数按照一定规则全排列,有几种排列方式
  • 棋盘问题:N皇后,解数独等等

ps: 组合 VS 排列

注意

  • 子集、组合与排列是不同性质的概念。子集、组合是无关顺序的,而排列是和元素顺序有关的,如 [1,2] 和 [2,1] 是同一个组合(子集),但 [1,2] 和 [2,1] 是两种不一样的排列!!!!因此被分为两类问题

如何理解回溯法

所有回溯法的问题都可以抽象为树形结构,因为回溯法解决的都是在集合中递归查找子集。

递归必须有终止条件,所以必然是一颗高度有限的数(N叉树)

回溯法目标

(1)返回值和参数

  • 返回值一般是void
  • 参数:因为回溯算法需要的参数不容器一次性确定,所以一般先写逻辑,然后需要什么参数就填什么参数
void backtracking(参数)

(2)终止条件

  • 既然是树形结构,所以遍历树形结构时一定要有终止条件
  • 什么时候终止呢?树一般到了叶子节点就终止,也就找到了满足条件的一个答案,把这个答案存放起来,并结束本层递归。

所以回溯函数终止条件伪代码如下:

if (终止条件) {
    存放结果;
    return;
}

(3)回溯搜索的遍历过程

回溯法一般是在集合中递归搜索,集合的大小构成了树的宽度,递归的深度构成的树的深度。
在这里插入图片描述

for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
    处理节点;
    backtracking(路径,选择列表); // 递归
    回溯,撤销处理结果
}

for循环就是遍历集合区间,可以理解一个节点有多少个孩子,这个for循环就执行多少次。

backtracking这里自己调用自己,实现递归。

大家可以从图中看出for循环可以理解是横向遍历,backtracking(递归)就是纵向遍历,这样就把这棵树全遍历完了,一般来说,搜索叶子节点就是找的其中一个结果了。

(4)分析完过程,回溯算法模板框架如下:

void backtracking(参数) {
    if (终止条件) {
        存放结果;
        return;
    }

    for (选择:本层集合中元素(树中节点孩子的数量就是集合的大小)) {
        处理节点;
        backtracking(路径,选择列表); // 递归
        回溯,撤销处理结果
    }
}


回溯和dfs并不相同:

  • 回溯法是盲目式搜索,只记录初始状态到目标状态的解路径。不记录已经搜索过的中间状态。
  • 深度优先是无启发式的图搜索,记录已经搜索过的状态,提高搜索效率。

类似题目

题目思路
leetcode:77. 给定集合[1…n],从中挑选k(指定)个数,返回所有组合(每个数可以用一次) combination组合是顺序无关的,如 [1,2] 和 [2,1] 是同一个组合不同排列。组合时需要一个idx来排除已经选过的数:对于每个数,有两种选择,要,不要;当path.size()==k时时表示找到了一种组合
leetcode:216. 给定集合[1…9],从中挑选k(指定)个数,令其和为target,返回所有组合(每个数可以用一次) combination-sum-iii比77题多了一个限制,和为target。组合时需要一个idx来排除已经选过的数:对于每个数,有两种选择,要,不要;当path.size() == k && currSum == targetSum时表示找到了一种组合
leetcode:46. 无序(不重复)数组所有的全排列 Permutations数要全部用光(每个答案长度是固定的),所以对于第一位可以选择num[0…x],对于第二位可以选择除了第一位的所有选择…直到所有数全部用完
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值