隐马尔科夫模型(一)

本章节首先介绍隐马尔科夫模型的定义,前提假设,和我们所关注的关于隐马尔科夫模型的问题。

.
在介绍离散马尔科夫模型之前,我们需要先给出马尔科夫性。假设有离散随机变量序列 X1,...,Xn,... ,如果 Xn 关于 X1,...,Xn1 的条件概率等于 Xn 关于 Xn1 的条件概率,即为下式:

P(Xn=xn|X1=x1,...,Xn1=xn1)=P(Xn=xn|Xn1=xn1)

那么我们我们称这个离散随机变量序列具有马尔科夫性。
离散马尔科夫链是这样的一个过程,给定可列个状态 S1,...,Sn,... .一个系统在时间t时所处的状态为 qt ,其取值范围为 {S1,...,Sn,...} .假设时间是均匀离散的,同时如果 qt 满足马尔科夫性,我们就称这个系统是一个马尔科夫模型。再者,我们令
aij=P(qt=j|qt1=i)

也就是说状态转移概率是和时间无关的,即为时间齐次性。

.
针对马尔科夫过程,系统在每个时间点t的状态我们是可以直接观测到的,但是隐马尔科夫模型假设这个状态我们无法直接观测,但是系统在到达某个状态时,我们可得到一个相关的观测值 Ot ,这个观测值只与当前状态相关。我们假定观测值的取值集合为 {v1,...,vm} ,t时刻状态 qt 取值集合为 {S1,...,Sn} .同时令

bj(i)=P(Ot=vi|qt=Sj)

表示在t时刻出于状态 Sj ,观测值 Ot vj 的条件概率。
这样我们便可以通过观测 {Ot} 来推断状态序列。

.
1.在t时刻的观测值 Ot 只与 qt 相关,在给定 qt 时,与之前的状态和观测值无关或者是之后的观测值或者是状态无关。
2.状态之间的马尔科夫性
.
一个完整的隐马尔科夫模型需要包含如果5个元素:
1.n:模型状态个数

S={S1,..,Sn}

2.m:不同观测值个数
V={v1,...,vm}

3.状态转移概率
A=[aij],aij=P(qt+1=Sj|qt=Si)

4.观测概率
B=[bj(i)],bj(i)=P(Ot=vi|qt=Sj)

5.初始状态概率
Π={πi},πi=P(q1=Si)

.
1.给定一个模型 λ ,也就是知道了这个模型的所有元素,估计每一种观测序列 O={O1,...,Or}
2.给定一个模型 λ 以及一个观测序列 O ,我们希望能够找到一个状态序列Q,使得最大化 P(Q|O,λ)
3.给定观测序列组成的训练集,也就是多个观测序列,对模型 λ 进行估计,使得产生这个训练集的概率最大化,也就是最大似然估计。

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值