monte carlo simulation

1.

我们默认本文中的马尔科夫链都是离散时间的。通常,我们所见到的马尔科夫链是离散状态的,但是为了能够模拟出连续随机变量的样本,我们必须引入连续状态马尔科夫链。通常,一个马尔科夫链由初始分布和状态转移矩阵来决定,相似的,连续状态马尔科夫链也是由这两个因素构成,只不过状态转移矩阵没办法来描述连续状态,我们再次引入转移核的概念,转移矩阵描述的是条件概率,同样,转移核描述的是条件概率,假设在 t 时刻状态值为xt,那么在 t+1 时刻的状态的概率密度函数为 K(xt,xt+1) ,所以

K(xt,A)=AK(xt,xt+1)dxt+1

通常写成 AK(xt,dxt+1) ,表示t+1时刻状态为A的条件概率。
同样,引出给定初始状态 x0 ,不同时刻状态的联合分布为
P(x1A1,...,xnAn|x0)=A1...AnK(xn1,xn)...K(x0,x1)

这和离散状态是相似的。
同样给出chapman-Kolmogorov 方程.目的就是给出n阶转移核,和离散状态n阶转移矩阵相似。For every (m,n) N2
Km+n(x,A)=yYKn(y,A)Km(x,dy)

最后我们给出连续状态马尔科夫链的平稳分布和 detailed balance condition 的关系,这和MCMC联系紧密。
. 不同时刻的状态分布相同,都为 π ,这个 π 就是平稳分布
detailed balance condition. 一个马尔科夫链,其转移核为K满足detailed balanced condition,即存在函数 f(x)
K(y,x)f(y)=K(x,y)f(x)

对每一个 (x,y) 成立
π使
detailedbalancedcondition
π
(靠,写了半天,只有这个有用。。,但是。。还没完,我靠了。。。不写了,不是很影响,在下面的metropolis-hastings算法中,我会说明如何构造相关的量的)

2.MCMC method for simulation. 引用monte carlo statistical method【点这里】中的定义7.1.
Markov chain Monte Carlo method for the simulation of distribution f is ay method producing an ergodic markov chain (X(t)) whose stationary distribution is f .
核心在于产生一个markov chain 使得我们需要模拟的分布是这个markov chain 的平稳分布,同时是遍历各态的,这样,我们就可以根据分布函数 f 进行抽样了。
3.metropolis hastings method.
Given x(t) ,
1.Generate Ytq(y|x(t)).
2.Take
X(t+1)=Yt with probability ρ(x(t),Yt)
X(t+1)=X(t) with probability 1- ρ(x(t),Yt)
where
ρ(x,y)=min{f(y)f(x)q(x|y)q(y|x),1}

the distribution q is called the instrumental distribution and the probability ρ(x,y) the metropolis-hastings acceptance proability.
结论:如果算法中的 q(y|x) 满足如下两个条件

P[f(x(t))q(Yt|x(t))f(Yt)q(x(t)|Yt)]<1

q(y|x)>0

那么如果 hL1(f) ,那么
limT1Tt=1Th(X(t))=h(x)f(x)dx

limn||Kn(x,.)μ(dx)f||=0

μ 是初始状态分布。
4.gibbs.
如果我们已知 X=x1,x2,...,xD 的联合分布 f(X) ,我们想要得到 X 的样本,我们可以用gibbs抽样的方法来得到关于x1的样本,具体的过程如下
这里写图片描述
关键在于条件分布的抽样确定
我们可以用下式来
p(X1=x1|X2=x(i1)2,...,XD=x(i1)D)=p(X1=x1,X2=x(i1)2,...XD=x(i1)D)p(X2=xi12,...,XD=x(i1)D)
上式的右边的分母是一个标准化的东西,跟 X1 无关,所以这个条件分布是和 p(X1=x1,X2=x(i1)2,...XD=x(i1)D) 呈正比,所以,我们在对这个条件概率抽样的时候,是可以不用担心分布这一项的,抽样是不会用到这一项的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值