monte carlo simulation

本文介绍了连续状态马尔科夫链的基本概念及其转移核的定义,并探讨了平稳分布与详细平衡条件之间的关系。此外,还讨论了MCMC方法在模拟分布中的应用,包括Metropolis-Hastings算法和Gibbs抽样方法。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.

我们默认本文中的马尔科夫链都是离散时间的。通常,我们所见到的马尔科夫链是离散状态的,但是为了能够模拟出连续随机变量的样本,我们必须引入连续状态马尔科夫链。通常,一个马尔科夫链由初始分布和状态转移矩阵来决定,相似的,连续状态马尔科夫链也是由这两个因素构成,只不过状态转移矩阵没办法来描述连续状态,我们再次引入转移核的概念,转移矩阵描述的是条件概率,同样,转移核描述的是条件概率,假设在 t 时刻状态值为xt,那么在 t+1 时刻的状态的概率密度函数为 K(xt,xt+1) ,所以

K(xt,A)=AK(xt,xt+1)dxt+1

通常写成 AK(xt,dxt+1) ,表示t+1时刻状态为A的条件概率。
同样,引出给定初始状态 x0 ,不同时刻状态的联合分布为
P(x1A1,...,xnAn|x0)=A1...AnK(xn1,xn)...K(x0,x1)

这和离散状态是相似的。
同样给出chapman-Kolmogorov 方程.目的就是给出n阶转移核,和离散状态n阶转移矩阵相似。For every (m,n) N2
Km+n(x,A)=yYKn(y,A)Km(x,dy)

最后我们给出连续状态马尔科夫链的平稳分布和 detailed balance condition 的关系,这和MCMC联系紧密。
. 不同时刻的状态分布相同,都为 π ,这个 π 就是平稳分布
detailed balance condition. 一个马尔科夫链,其转移核为K满足detailed balanced condition,即存在函数 f(x)
K(y,x)f(y)=K(x,y)f(x)

对每一个 (x,y) 成立
π使
detailedbalancedcondition
π
(靠,写了半天,只有这个有用。。,但是。。还没完,我靠了。。。不写了,不是很影响,在下面的metropolis-hastings算法中,我会说明如何构造相关的量的)

2.MCMC method for simulation. 引用monte carlo statistical method【点这里】中的定义7.1.
Markov chain Monte Carlo method for the simulation of distribution f is ay method producing an ergodic markov chain (X(t)) whose stationary distribution is f .
核心在于产生一个markov chain 使得我们需要模拟的分布是这个markov chain 的平稳分布,同时是遍历各态的,这样,我们就可以根据分布函数 f 进行抽样了。
3.metropolis hastings method.
Given x(t) ,
1.Generate Ytq(y|x(t)).
2.Take
X(t+1)=Yt with probability ρ(x(t),Yt)
X(t+1)=X(t) with probability 1- ρ(x(t),Yt)
where
ρ(x,y)=min{f(y)f(x)q(x|y)q(y|x),1}

the distribution q is called the instrumental distribution and the probability ρ(x,y) the metropolis-hastings acceptance proability.
结论:如果算法中的 q(y|x) 满足如下两个条件

P[f(x(t))q(Yt|x(t))f(Yt)q(x(t)|Yt)]<1

q(y|x)>0

那么如果 hL1(f) ,那么
limT1Tt=1Th(X(t))=h(x)f(x)dx

limn||Kn(x,.)μ(dx)f||=0

μ 是初始状态分布。
4.gibbs.
如果我们已知 X=x1,x2,...,xD 的联合分布 f(X) ,我们想要得到 X 的样本,我们可以用gibbs抽样的方法来得到关于x1的样本,具体的过程如下
这里写图片描述
关键在于条件分布的抽样确定
我们可以用下式来
p(X1=x1|X2=x(i1)2,...,XD=x(i1)D)=p(X1=x1,X2=x(i1)2,...XD=x(i1)D)p(X2=xi12,...,XD=x(i1)D)
上式的右边的分母是一个标准化的东西,跟 X1 无关,所以这个条件分布是和 p(X1=x1,X2=x(i1)2,...XD=x(i1)D) 呈正比,所以,我们在对这个条件概率抽样的时候,是可以不用担心分布这一项的,抽样是不会用到这一项的

Monte Carlo simulation is a powerful tool for modeling complex physical systems. It involves using random numbers to simulate the behavior of a system over time, and can be used to study a wide range of phenomena, from the behavior of particles in a collider to the spread of disease in a population. In the context of the reconstruction toolkit, Monte Carlo simulation can be used to model the behavior of a detector system and the particles that interact with it. This allows researchers to study the performance of the detector under different conditions and optimize its design. To carry out a Monte Carlo simulation with the reconstruction toolkit, several steps are typically involved: 1. Define the geometry of the detector system, including the materials used and the placement of sensors and other components. 2. Specify the particles to be simulated, including their energy, momentum, and other properties. 3. Use the Monte Carlo algorithm to simulate the behavior of the particles as they interact with the detector system. 4. Collect data on the resulting interactions and use this data to reconstruct the original events. 5. Analyze the reconstructed events to study the performance of the detector and make improvements as needed. Overall, Monte Carlo simulation with the reconstruction toolkit is a powerful tool for studying complex physical systems and optimizing their design. It requires expertise in both physics and computer science, but can lead to important insights and breakthroughs in a wide range of fields.
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值