第一章 [----什么是[临界知识]]
目录
自序
-
学习的三个目标:
1.解释问题[----看清问题本质]
2.解决问题[----根据问题关键提出解决方案,最好有备用方案]
3.预测问题[----找到基本规律,预测未来走向]
[----学习的本质:不断精进思维模式--从认知深度到解决方案的不断优化以及规律的抽象提取与应用,循环往复]
-
有效学习依据:
日常行为或者认知方式发生改变
-
知识管理的三维度
1.找到并归类数据
2.应用好的方法理解消化数据与知识
3.积累大量知识后,提取背后关联,总结普遍性规律,找到新规律
-
深度认知与临界知识 P6
深度认知便是分析具体现象,抽象出背后的基本规律
深度抽象往往依托实验证据或数据,非情绪或经验预测
深度抽象能解决类似问题,非特定问题
[----基本规律越抽象,越具有普遍性。但是抽象得建立在众多数据与实验之上,如果没有经历或者理解,最简单的规律往往都不会使用]
[----临界知识,可以理解为可以跨界使用的普遍性基本规律,具体针对性很弱]
[----脑中装了一大堆信息,却没有串联整合、合并简化,导致越学越多,看到什么新的都觉得没学过,又再花时间学一遍,根本没有那么多时间和精力。但其实很多东西有连通性,所谓一通百通或者顿悟,就是明白了底层规律融会贯通,所以除了太具体太专业的情景要求专业知识配合,大部分情况都能应付得了]
-
学什么才有用?P15
20% 精力:执行能力(基本常识,扩大知识面,不太讲求深度)
80% 精力:专业能力(专业知识经验)+结构能力(思维模式与普遍规律)
必须在一个领域做到极致,对他的认识足够深刻,才可能获得真正的话语权。(P15)
[----作为技术领域一环,测试如果不明白代码是怎样编写的,就不会对产品有更深刻的认知,所以及使能够应付功能性测试,也不会有太深的造诣,因为对底层不了解,就不可能有所谓的深刻认识。国外都是从优秀程序员中晋升测试,就是因为对产品技术实现有更深刻的认识]
-
为什么临界知识能发挥四两拨千斤的作用?(第三章P118)
1.很多复杂事情背后由简单规律决定
2.专业性强的知识 对不确定性强的复杂问题反而适用性差(世界是网络环状甚至网状系统,并非直接的因果线性关系,而是多因素互相影响的系统)
[----临界知识更适用于不确定性,因为它简单,本身的模糊抽象性很强,所以适应性更强]
能力上限是对问题系统认知的深刻度
--工作几年后觉得学不到什么东西了,能力增长到了天花板。所谓天花板,是只能相对孤立割裂地看问题,缺乏对底层规律的认识,无法打通知识体系。掌握学习临界知识的理念与方法,将快领域的知识互相穿插借鉴,后期学习速度会越来越快。
[----平移借鉴知识与经验的前提是对于知识经验中所含简单规律有深刻认识,否则经验也只会是一个个单独的依赖特殊条件才能成立的具体案例,没有太多通用价值]