Durbin Waston统计+Durbin Waston检验表

Durbin-Watson统计量用于检查回归模型中残差的正态分布情况,其值接近2表示残差正常。若远离2,则可能影响模型解释力。DW统计量与ACF和PACF相关,分别反映时间序列的自相关和偏自相关。DW值范围揭示残差的自相关性质:0-2表示负自相关,2表示无自相关,4表示正自相关。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Durbin Waston统计+Durbin Waston检验表

 

Durbin Waston统计

Durbin Waston检验表

 

D.W统计量是用来检验残差分布是否为正态分布的,因为用OLS进行回归估计是假设模型残差服从正态分布的,因此,如果残差不服从正态分布,那么,模型将是有偏的,也就是说模型的解释能力是不强的.

D.W统计量在2左右说明残差是服从正态分布的,若偏离2太远,那么你所构建的模型的解释能力就要受影响了.

See the source image

与ACF(自相关),PACF(偏自相关)的关系。

自相关函数(ACF)决定时间序列及其滞后时间序列的相关性。

偏自相关函数(PACF)也用来度量时间序列与滞后时间序列的相关性。

 

DW在0和2之间说明残差序列存在负自相关,DW在2和4之间,存在正自相关。DW=2残差序列无自相关,DW=0残差序列完全负自相关,DW=4残差序列完全正自相关,

 

 

参考:python machine learning case studies

参考:使用 Durbin-Watson 统计量检验自相关

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Data+Science+Insight

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值