-
显存:GPU中的显存类似于内存,用于存放模型、数据。显存越大,所能运行的网络也就越大。
-
计算单元:计算单元的性能越好,进行网络训练/推理时速度就越快。衡量GPU计算单元性能的指标是FLOPS,衡量模型计算量的指标是FLOPs(注意区分s大小写)。
-
显卡带宽:,是指计算单元与显存之间的数据传输速率,以“字节/秒”或“GB/s”为单位。显存带宽越大,计算单元与显存之间交换等量数据的速率就越快。
-
参数量:指模型中所有需要学习的参数的总数,在论文中有时用#parameters表示,用来衡量一个模型的复杂度,也反映了模型需要占用显存的大小。
-
FLOPS:指每秒浮点运算次数,可以理解为计算速度,是一个衡量硬件性能的指标。
-
FLOPs:s小写,表示复数,指浮点运算数,可以理解为计算量,用来衡量算法/模型的复杂度。
神经网络常见指标
最新推荐文章于 2024-10-25 20:46:47 发布