小矩形块组成大矩形块

题目描述

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。
请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

思路:

先下结论,还是斐波那契
如同,如果第一个方块是纵向放置,则剩余的是f(n-1)种,
如果第一次放置时横向放置,则第二块位置只能横向放置,因此剩余f(n-2)种
因此:f(n) = f(n-1) + f(n-2)
故,显而易见,又是斐波那契数列。
f(1) = 1
f(2) = 2
f(3) = 3
.
.
.
f(n) = f(n-1) + f(n-2)

输入:

5

输出:

输入数据为: 5
输出:
有 5 个小矩形
共有 8 种方法。

代码

#include <iostream>


using  namespace std;

class Solution{
public:
    int rectCover(int number){
        if(number == 1 || number == 2 || number == 0){
            cout << "有 " << number << " 个小矩形" << endl << "共有 " << number << " 种方法。" << endl;
            return number;
        }
        int num1(1),num2(2);
        for (int i = 0; i < number - 2; ++i) {
            num2 = num1 + num2;
            num1 = num2 - num1;
        }
        cout << "有 " << number << " 个小矩形" << endl << "共有 " << num2 << " 种方法。" << endl;
        return num2;
    }
};

int main(){

    Solution re;
    int n(5);
    cout << "输入数据为: " << n << endl << "输出: " << endl;
    re.rectCover(n);

    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值