圆周对称点


虽然小标题很多,但里面的内容不多,慢慢看!

一、背景简介

  考虑这样一个问题:已知圆 O \small O O 内一点 M 0 ,   O M 0 = ρ 0 \small M_0,\, OM_0=\rho_0 M0,OM0=ρ0,求射线 O M 0 \small OM_0 OM0 上一点 M 1 \small M_1 M1,使得对于圆周上任一点 P \small P P,都有 P M 0 / P M 1 \small PM_0/PM_1 PM0/PM1 为常数.

二、求解思路

  “听起来不可思议,去做做才知道有没有可能”.
  设 O P \small OP OP 与极轴的夹角为 θ ,    O M 1 = d \small \theta,\; OM_1=d θ,OM1=d,则 P M 0 2 = R 2 + ρ 0 2 − 2 R ρ 0 c o s θ PM_0^2=R^2+\rho_0^2-2R\rho_0cos\theta PM02=R2+ρ022Rρ0cosθ P M 1 2 = R 2 + d 2 − 2 R d c o s θ PM_1^2=R^2+d^2-2Rdcos\theta PM12=R2+d22Rdcosθ g ( θ ) = P M 0 2 P M 1 2 = R 2 + ρ 0 2 − 2 R ρ 0 c o s θ R 2 + d 2 − 2 R d c o s θ g(\theta)=\frac{PM_0^2}{PM_1^2}=\frac{R^2+\rho_0^2-2R\rho_0cos\theta}{R^2+d^2-2Rdcos\theta} g(θ)=PM12PM02=R2+d22RdcosθR2+ρ022Rρ0cosθ根据题意, g ( θ ) \small g(\theta) g(θ) 的值应与 P \small P P 的位置无关,即 d g ( θ ) d θ = 0 \frac{dg(\theta)}{d\theta}=0 dθdg(θ)=0 d g ( θ ) d θ = 2 R ρ 0 s i n θ P M 1 4 ( d 2 − R 2 + ρ 0 2 ρ 0 d + R 2 ) = 0 \frac{dg(\theta)}{d\theta}=\frac{2R\rho_0sin\theta}{PM_1^4}(d^2-\frac{R^2+\rho_0^2}{\rho_0}d+R^2)=0 dθdg(θ)=PM142Rρ0sinθ(d2ρ0R2+ρ02d+R2)=0 d 2 − R 2 + ρ 0 2 ρ 0 d + R 2 = 0 d^2-\frac{R^2+\rho_0^2}{\rho_0}d+R^2=0 d2ρ0R2+ρ02d+R2=0解得 d = R 2 ρ

  • 6
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值