无穷积分 ∫sinx/xdx 的几种巧妙解法

  狄利克雷积分   ∫ 0 ∞ sin ⁡ x x d x   \,\displaystyle \int_{0}^{\infin}\frac{\sin x}{x}dx\, 0xsinxdx 是一个比较常见的无穷积分,在很多领域有着重要应用。

  下面介绍几种巧妙解法。为了您更好的阅读体验,请使用电脑浏览。

1. Fourier 正弦展开

∫ 0 ∞ sin ⁡ x x d x = lim ⁡ m → ∞ ∫ 0 m π sin ⁡ x x d x \int_{0}^{\infin}\frac{\sin x}{x}dx=\lim_{m\to\infin}\int_0^{m\pi}\frac{\sin x}{x}dx 0xsinxdx=mlim0mπxsinxdx 令   h = π / k ,将区间   [ 0 , m π ]   分割成   k m   个长度为   h   的小区间,由黎曼积分的定义 \text{令}\,h=\pi/k\text{,将区间}\,[0,m\pi]\,\text{分割成}\,km\,\text{个长度为}\,h\,\text{的小区间,由黎曼积分的定义} h=π/k,将区间[0,mπ]分割成km个长度为h的小区间,由黎曼积分的定义
∫ 0 m π sin ⁡ x x d x = lim ⁡ h → 0 + ∑ n = 1 k m sin ⁡ n h n h h = lim ⁡ h → 0 + ∑ n = 1 k m sin ⁡ n h n \int_0^{m\pi}\frac{\sin x}{x}dx=\lim_{h\to0^+}\sum_{n=1}^{km}\frac{\sin nh}{nh}h=\lim_{h\to0^+}\sum_{n=1}^{km}\frac{\sin nh}{n} 0mπxsinxdx=h0+limn=1kmnhsinnhh=h0+limn=1kmnsinnh 由   Fourier   正弦展开 \text{由}\,\textrm{Fourier}\,\text{正弦展开} Fourier正弦展开
π − h 2 = ∑ n = 1 ∞ sin ⁡ n h n , ( 0 < h < π ) \frac{\pi-h}{2}=\sum_{n=1}^{\infin}\frac{\sin nh}{n},(0<h<\pi) 2πh=n=1nsinnh,(0<h<π) 所以 \text{所以} 所以
∫ 0 ∞ sin ⁡ x x d x = lim ⁡ m → ∞ ∫ 0 m π sin ⁡ x x d x = lim ⁡ m → ∞ lim ⁡ h → 0 + ∑ n = 1 k m sin ⁡ n h n = lim ⁡ h → 0 + lim ⁡ m → ∞ ∑ n = 1 k m sin ⁡ n h n = lim ⁡ h → 0 + π − h 2 = π 2 \begin{aligned}\int_{0}^{\infin}\frac{\sin x}{x}dx&=\lim_{m\to\infin}\int_0^{m\pi}\frac{\sin x}{x}dx\\&=\lim_{m\to\infin}\lim_{h\to0^+}\sum_{n=1}^{km}\frac{\sin nh}{n}\\&=\lim_{h\to0^+}\lim_{m\to\infin}\sum_{n=1}^{km}\frac{\sin nh}{n}\\&=\lim_{h\to0^+}\frac{\pi-h}{2}\\&=\frac{\pi}{2}\end{aligned} 0xsinxdx=mlim0mπxsinxdx=mlimh0+limn=1kmnsinnh=h0+limmlimn=1kmnsinnh=h0+lim2πh=2π

2. 交换积分次序

∫ 0 ∞ sin ⁡ x x   d x = ∫ 0 ∞ sin ⁡ x   1 x   d x = ∫ 0 ∞ sin ⁡ x ( ∫ 0 ∞ e − x y d y ) d x ( 交换积分次序 ) = ∫ 0 ∞ ( ∫ 0 ∞ e − y x sin ⁡ x   d x ) d y ∫ 0 ∞ e − y x sin ⁡ x   d x = ∫ 0 ∞ e − y x 1 2 i ( e i x − e − i x ) d x = 1 2 i ∫ 0 ∞ ( e − ( y − i ) x − e − ( y + i ) x ) d x = 1 2 i ( − 1 y − i e − ( y − i ) x + 1 y + i e − ( y + i ) x ) ∣ 0 ∞ = 1 2 i ( 1 y − i − 1 y + i ) = 1 y 2 + 1 \begin{aligned}\int_{0}^{\infin}\frac{\sin x}{x}\,dx&=\int_{0}^{\infin}\sin x\,\frac{1}{x}\,dx\\&=\int_{0}^{\infin}\sin x\big(\int_{0}^{\infin}e^{-xy}dy\big)dx \quad(\text{交换积分次序})\\&=\int_{0}^{\infin}\big(\int_{0}^{\infin}e^{-yx}\sin x\,dx\big)dy \\ \\\int_{0}^{\infin}e^{-yx}\sin x\,dx&=\int_{0}^{\infin}e^{-yx}\frac{1}{2i}(e^{ix}-e^{-ix})dx\\&=\frac{1}{2i}\int_{0}^{\infin}(e^{-(y-i)x}-e^{-(y+i)x})dx\\&=\frac{1}{2i}\big(-\frac{1}{y-i}e^{-(y-i)x}+\frac{1}{y+i}e^{-(y+i)x}\big)\Big|_0^\infin\\&=\frac{1}{2i}\big(\frac{1}{y-i}-\frac{1}{y+i}\big)\\&=\frac{1}{y^2+1}\end{aligned} 0xsinxdx0eyxsinxdx=0sinxx1dx=0sinx(0exydy)dx(交换积分次序)=0(0eyxsinxdx)dy=0eyx2i1(eixeix)dx=2i10(e(yi)xe(y+i)x)dx=2i1(yi1e(yi)x+y+i1e(y+i)x)0=2i1(yi1y+i1)=y2+11 ∴    原式 = ∫ 0 ∞ 1 y 2 + 1 d y = arctan ⁡ y   ∣ 0 ∞ = π 2 . \begin{aligned} \therefore\,\, \text{原式}=\int_{0}^{\infin}\frac{1}{y^2+1}dy=\arctan y\,\Big|_0^{\infin} =\frac{\pi}{2}\end{aligned}. 原式=0y2+11dy=arctany0=2π.

3. 构造含参变量函数

记   I = ∫ 0 ∞ sin ⁡ t t   d t ,构造函数   f ( x ) = ∫ 0 ∞ e − x t sin ⁡ t t   d t ,则   f ( 0 ) = I . \begin{aligned}\text{记}\,I=\int_{0}^{\infin}\frac{\sin t}{t}\,dt\text{,构造函数}\,f(x)=\int_{0}^{\infin}e^{-xt}\frac{\sin t}{t}\,dt\text{,则}\,f(0)=I\end{aligned}. I=0tsintdt,构造函数f(x)=0exttsintdt,则f(0)=I.
0 ≤ ∣ f ( x ) ∣ ≤ ∫ 0 ∞ e − x t ∣ sin ⁡ t t ∣ d t ≤ ∫ 0 ∞ e − x t d t = 1 x 0\leq\big|f(x)\big|\leq\int_{0}^{\infin}e^{-xt}\bigg|\frac{\sin t}{t}\bigg|dt \leq \int_{0}^{\infin}e^{-xt}dt=\frac{1}{x} 0f(x)0exttsintdt0extdt=x1

两边取极限, x → ∞ ,   f ( ∞ ) = 0. \text{两边取极限,}x\to\infin,\,f(\infin)=0. 两边取极限,x,f()=0.

f ′ ( x ) = ∫ 0 ∞ ∂ ∂ x ( e − x t sin ⁡ t t ) d t = − ∫ 0 ∞ e − x t sin ⁡ t   d t = − 1 x 2 + 1 ( 由上一方法中的结果 ) \begin{aligned}f'(x)&=\int_{0}^{\infin}\frac{\partial }{\partial x}\Big( e^{-xt}\frac{\sin t}{t}\Big)dt\\&=-\int_{0}^{\infin}e^{-xt}\sin t \,dt\\&=-\frac{1}{x^2+1} \quad (\text{由上一方法中的结果})\end{aligned} f(x)=0x(exttsint)dt=0extsintdt=x2+11(由上一方法中的结果)

由牛顿-莱布尼兹公式 \text{由牛顿-莱布尼兹公式} 由牛顿-莱布尼兹公式
0 − I = f ( ∞ ) − f ( 0 ) = ∫ 0 ∞ f ′ ( x ) d x = − ∫ 0 ∞ 1 x 2 + 1 d x = − arctan ⁡ x   ∣ 0 ∞ = − π 2 0-I=f(\infin)-f(0)=\int_0^{\infin}f'(x)dx=-\int_0^{\infin}\frac{1}{x^2+1} dx =-\arctan x \,\bigg|_0^{\infin}=-\frac{\pi}{2} 0I=f()f(0)=0f(x)dx=0x2+11dx=arctanx0=2π 所以   I = π 2 . \begin{aligned}\text{所以}\,I=\frac{\pi}{2}\end{aligned}. 所以I=2π.

4. Laplace 变换

令   f ( t ) = ∫ 0 ∞ sin ⁡ t x x   d x ,   t > 0 ,对   f ( t )   作拉普拉斯变换,令 \begin{aligned}\text{令}\,f(t)=\int_{0}^{\infin}\frac{\sin tx}{x}\,dx,\, t>0\text{,对}\,f(t)\, \text{作拉普拉斯变换,令}\end{aligned} f(t)=0xsintxdx,t>0,对f(t)作拉普拉斯变换,令
F ( s ) = L [ f ( t ) ] = L [ ∫ 0 ∞ sin ⁡ t x x d x ] t = ∫ 0 ∞ 1 x L [ sin ⁡ t x ] t d x = ∫ 0 ∞ 1 s 2 + x 2   d x = 1 s ∫ 0 ∞ 1 1 + ( x s ) 2   d ( x s ) ( let   u   =   x s ) = 1 s arctan ⁡ u   ∣ 0 ∞ = 1 s π 2 \begin{aligned}F(s)=\mathscr{L}[f(t)]&=\mathscr{L}\Big[\int_{0}^{\infin}\frac{\sin tx}{x}dx\Big]_t\\&=\int_{0}^{\infin} \frac{1}{x}\mathscr{L}\big[\sin tx \big]_tdx\\&=\int_{0}^{\infin}\frac{1}{s^2+x^2}\,dx\\&=\frac{1}{s}\int_{0}^{\infin}\frac{1}{1+(\displaystyle \frac{x}{s})^2}\,d(\frac{x}{s}) \quad (\textit{let u = $\displaystyle \frac{x}{s}$})\\&=\frac{1}{s}\arctan u\,\Big|_0^{\infin}\\&=\frac{1}{s}\frac{\pi}{2}\end{aligned} F(s)=L[f(t)]=L[0xsintxdx]t=0x1L[sintx]tdx=0s2+x21dx=s101+(sx)21d(sx)(let u = sx)=s1arctanu0=s12π 则    f ( t ) = L − 1 [ F ( s ) ] = π 2 L − 1 [ 1 s ] = π 2 . \begin{aligned}\text{则}\,\, f(t)=\mathscr{L}^{-1}\big[F(s)\big]=\frac{\pi}{2}\mathscr{L}^{-1}\big[\frac{1}{s}\big]=\frac{\pi}{2}\end{aligned}. f(t)=L1[F(s)]=2πL1[s1]=2π.

令人惊奇的是, f ( t )   的值竟与   t   无关,于是我们得到一个更为普遍的结论 \begin{aligned}\text{令人惊奇的是,}f(t)\, \text{的值竟与} \,t\, \text{无关,于是我们得到一个更为普遍的结论}\end{aligned} 令人惊奇的是,f(t)的值竟与t无关,于是我们得到一个更为普遍的结论 ∫ 0 ∞ sin ⁡ t x x   d x = π 2 ,   t > 0 \int_0^{\infin}\frac{\sin tx}{x}\,dx=\frac{\pi}{2},\,t>0 0xsintxdx=2π,t>0 如果你也觉得不可思议的话,不妨看看我的解释 \text{如果你也觉得不可思议的话,不妨看看我的解释} 如果你也觉得不可思议的话,不妨看看我的解释
f ′ ( t ) = ∫ 0 ∞ ∂ ∂ t ( sin ⁡ t x x ) d x = ∫ 0 ∞ cos ⁡ t x   d x = lim ⁡ n → ∞ ∫ 0 n π / t cos ⁡ t x   d x ( l e t    u = t x ) = lim ⁡ n → ∞ 1 t ∫ 0 n π cos ⁡ u   d u = 1 t lim ⁡ n → ∞ sin ⁡ u   ∣ 0 n π = 0 \begin{aligned}f'(t)&=\int_0^{\infin}\frac{\partial }{\partial t}\Big(\frac{\sin tx}{x}\Big)dx \\&=\int_0^{\infin}\cos tx\,dx\\&=\lim_{n\to\infin}\int_0^{n\pi/t}\cos tx\,dx \quad (let\,\, u=tx)\\&=\lim_{n\to\infin}\frac{1}{t}\int_0^{n\pi}\cos u\,du\\&=\frac{1}{t}\lim_{n\to\infin} \sin u\,\Big|_0^{n\pi}\\&=0\end{aligned} f(t)=0t(xsintx)dx=0costxdx=nlim0nπ/tcostxdx(letu=tx)=nlimt10nπcosudu=t1nlimsinu0nπ=0 所以   f ( t ) = C ,   与   t   无关 . \text{所以}\,f(t)=C,\,\text{与}\,t\,\text{无关}. 所以f(t)=C,t无关.

5. Fourier 变换

令 \text{令} f ( t ) = { 1 ,    ∣ t ∣ < 1 0 ,    ∣ t ∣ ≥ 1 f(t)=\begin{cases}1,\,\,|t|<1 \\ 0,\,\,|t|\geq1\end{cases} f(t)={1,t<10,t1 ,对   f ( t )   作傅里叶变换,令 \text{,对} \,f(t)\, \text{作傅里叶变换,令} ,对f(t)作傅里叶变换,令

F ( μ ) = F [ f ( t ) ] = ∫ − ∞ ∞ f ( t ) e − i μ t d t = ∫ − 1 1 e − i μ t d t = − 1 i μ e − i μ t ∣ − 1 1 = 2 μ 1 2 i ( e i μ − e − i μ ) = 2   sin ⁡ μ μ \begin{aligned}F(\mu)&=\mathscr{F}[f(t)]\\&=\int_{-\infin}^{\infin} f(t)e^{-i\mu t}dt\\&=\int_{-1}^{1} e^{-i\mu t}dt\\&=-\frac{1}{i\mu}e^{-i\mu t}\Big|_{-1}^{1}\\&=\frac{2}{\mu}\frac{1}{2i}(e^{i\mu}-e^{-i\mu})\\&=2\,\frac{\sin \mu}{\mu}\end{aligned} F(μ)=F[f(t)]=f(t)eiμtdt=11eiμtdt=iμ1eiμt11=μ22i1(eiμeiμ)=2μsinμ 则   f ( t ) = F − 1 [ F ( μ ) ] = 1 2 π ∫ − ∞ ∞ 2   sin ⁡ μ μ e i μ t d μ . \begin{aligned}\text{则}\,f(t)=\mathscr{F}^{-1}\big[F(\mu)\big]=\frac{1}{2\pi}\int_{-\infin}^{\infin}2\,\frac{\sin \mu}{\mu}e^{i\mu t}d\mu.\end{aligned} f(t)=F1[F(μ)]=2π12μsinμeiμtdμ.
取   t = 0 ,则 \text{取}\,t=0\text{,则} t=0,则 1 = f ( 0 ) = 1 π ∫ − ∞ ∞ sin ⁡ μ μ   d μ = 2 π ∫ 0 ∞ sin ⁡ μ μ   d μ 1=f(0)=\frac{1}{\pi}\int_{-\infin}^{\infin}\frac{\sin \mu}{\mu}\,d\mu=\frac{2}{\pi}\int_{0}^{\infin}\frac{\sin \mu}{\mu}\,d\mu 1=f(0)=π1μsinμdμ=π20μsinμdμ 所以   ∫ 0 ∞ sin ⁡ μ μ   d μ = π 2 . 妙哉! . \begin{aligned}\text{所以}\,\int_{0}^{\infin}\frac{\sin \mu}{\mu}\,d\mu=\frac{\pi}{2}.\quad\text{妙哉!}\end{aligned}. 所以0μsinμdμ=2π.妙哉!.

6. 狄拉克函数

首先来介绍一下狄拉克函数(就是 Dirac   创造的函数),也称脉冲函数(比较形象): \text{首先来介绍一下狄拉克函数(就是 \text{Dirac}\,创造的函数),也称脉冲函数(比较形象):} 首先来介绍一下狄拉克函数(就是 Dirac创造的函数),也称脉冲函数(比较形象)

   δ ( t ) = { ∞ , t = 0 0 , t ≠ 0   ,且满足   ∫ − ∞ ∞ δ ( t ) d t = 1. \delta(t)=\begin{cases}\infin,&t=0 \\0,&t\neq 0\end{cases}\,\text{,且满足}\,\displaystyle\int_{-\infin}^{\infin}\delta(t)dt=1. δ(t)={,0,t=0t=0,且满足δ(t)dt=1.

容易验证: ∫ − ∞ ∞ δ ( t ) f ( t ) d t = f ( 0 ) . \text{容易验证:}\displaystyle\int_{-\infin}^{\infin}\delta(t)f(t)dt=f(0). 容易验证:δ(t)f(t)dt=f(0).

取   f ( t ) = e − i μ t ,   f ( 0 ) = 1. \text{取}\,f(t)=e^{-i\mu t},\,f(0)=1. f(t)=eiμt,f(0)=1.

则脉冲函数的傅里叶变换    F ( μ ) = F [ δ ( t ) ] = ∫ − ∞ ∞ δ ( t ) e − i μ t d t = 1 \text{则脉冲函数的傅里叶变换}\,\,\displaystyle F(\mu)=\mathscr{F}[\delta(t)]=\int_{-\infin}^{\infin} \delta(t)e^{-i\mu t}dt=1 则脉冲函数的傅里叶变换F(μ)=F[δ(t)]=δ(t)eiμtdt=1.

作傅里叶反变换    δ ( t ) = F − 1 [ F ( μ ) ] = 1 2 π ∫ − ∞ ∞ e i μ t d μ . \text{作傅里叶反变换}\,\,\displaystyle\delta(t)=\mathscr{F}^{-1}\big[F(\mu)\big]=\frac{1}{2\pi}\int_{-\infin}^{\infin} e^{i\mu t}d\mu. 作傅里叶反变换δ(t)=F1[F(μ)]=2π1eiμtdμ.

准备工作完成,构造函数 \text{准备工作完成,构造函数} 准备工作完成,构造函数   g ( λ ) = ∫ − ∞ ∞ sin ⁡ λ x x d x ,则   g ( 1 ) = ∫ − ∞ ∞ sin ⁡ x x d x . \,\displaystyle g(\lambda)=\int_{-\infin}^{\infin}\frac{\sin \lambda x}{x}dx\text{,则}\,g(1)=\int_{-\infin}^{\infin}\frac{\sin x}{x}dx. g(λ)=xsinλxdx,则g(1)=xsinxdx.

g ′ ( λ ) = ∫ − ∞ ∞ ∂ ∂ λ ( sin ⁡ λ x x ) d x = ∫ − ∞ ∞ cos ⁡ λ x d x + 0 = ∫ − ∞ ∞ cos ⁡ λ x d x + i ∫ − ∞ ∞ sin ⁡ λ x d x = ∫ − ∞ ∞ e i λ x d x = 2 π ( 1 2 π ∫ − ∞ ∞ e i λ x d x ) = 2 π δ ( λ ) \begin{aligned}g'(\lambda)&=\int_{-\infin}^{\infin}\frac{\partial }{\partial \lambda}\Big( \frac{\sin \lambda x}{x}\Big)dx\\&=\int_{-\infin}^{\infin}\cos \lambda xdx+0\\&=\int_{-\infin}^{\infin}\cos \lambda x dx+i\int_{-\infin}^{\infin}\sin \lambda x dx\\&=\int_{-\infin}^{\infin}e^{i\lambda x}dx\\&=2\pi \big(\frac{1}{2\pi}\int_{-\infin}^{\infin}e^{i\lambda x}dx\big)\\&=2\pi \delta(\lambda)\end{aligned} g(λ)=λ(xsinλx)dx=cosλxdx+0=cosλxdx+isinλxdx=eiλxdx=2π(2π1eiλxdx)=2πδ(λ)

因为   g ( λ )   是奇函数,所以 \text{因为}\,g(\lambda)\,\text{是奇函数,所以} 因为g(λ)是奇函数,所以

g ( 1 ) = − g ( − 1 ) = 1 2 (   g ( 1 ) − g ( − 1 )   ) ( 由   N - L   公式 ) = 1 2 ∫ − 1 1 g ′ ( λ ) d λ = 1 2 ∫ − 1 1 2 π δ ( λ ) d λ      ( δ ( λ ) = 0 ,   λ ≠ 0 ) = π ∫ − ∞ ∞ δ ( λ ) d λ = π \begin{aligned}g(1)&=-g(-1)\\&=\frac{1}{2}\big(\,g(1)-g(-1)\,\big) \quad (\text{由}\, N\text{-}L\, \text{公式})\\&=\frac{1}{2} \int_{-1}^{1}g'(\lambda)d\lambda\\&=\frac{1}{2} \int_{-1}^{1} 2\pi \delta(\lambda) d\lambda \quad\,\,\,\, (\delta(\lambda)=0,\,\lambda\neq0)\\&=\pi \int_{-\infin}^{\infin}\delta(\lambda)d\lambda\\&=\pi\end{aligned} g(1)=g(1)=21(g(1)g(1))(N-L公式)=2111g(λ)dλ=21112πδ(λ)dλ(δ(λ)=0,λ=0)=πδ(λ)dλ=π 妙极! \text{妙极!} 妙极!

7. 留数定理

定理内容:当被积函数   f ( x )   是   x   的有理函数(多项式除多项式),且分母的次数比分子 \begin{aligned}\text{定理内容:当被积函数} \,f(x)\, \text{是}\, x \,\text{的有理函数(多项式除多项式),且分母的次数比分子}\end{aligned} 定理内容:当被积函数f(x)x的有理函数(多项式除多项式),且分母的次数比分子
的次数至少高一次, f ( z )   在实轴上除去有限多个一级奇点   x 1 , x 2 , ⋯   , x p   外处处解析, \begin{aligned}\text{的次数至少高一次,}f(z)\,\text{在实轴上除去有限多个一级奇点}\,x_1,x_2,\cdots,x_p\, \text{外处处解析,}\end{aligned} 的次数至少高一次,f(z)在实轴上除去有限多个一级奇点x1,x2,,xp外处处解析,
在上半复平面   ( I m   z > 0 )   除去有限多个奇点   z 1 , z 2 , ⋯   , z q   外处处解析,则 \begin{aligned}\text{在上半复平面}\,(\mathrm{Im}\,z>0)\,\text{除去有限多个奇点}\,z_1,z_2,\cdots,z_q\,\text{外处处解析,则}\end{aligned} 在上半复平面(Imz>0)除去有限多个奇点z1,z2,,zq外处处解析,则

∫ − ∞ ∞ f ( x ) e i m x d x = π i ∑ k = 1 p R e s [ f ( z ) e i m z , x k ] + 2 π i ∑ k = 1 q R e s [ f ( z ) e i m z , z k ] \int_{-\infin}^{\infin}f(x)e^{imx}dx=\pi i\sum_{k=1}^{p}\mathrm{Res}[f(z)e^{imz},x_k]+2\pi i\sum_{k=1}^{q}\mathrm{Res}[f(z)e^{imz},z_k] f(x)eimxdx=πik=1pRes[f(z)eimz,xk]+2πik=1qRes[f(z)eimz,zk]

其中   R e s [ f ( z ) , z 0 ]   为函数   f   在   z 0   处的留数,定义如下: \begin{aligned}\text{其中}\,\mathrm{Res}[f(z),z_0]\,\text{为函数}\,f\,\text{在}\,z_0\,\text{处的留数,定义如下:}\end{aligned} 其中Res[f(z),z0]为函数fz0处的留数,定义如下:

   若   z 0   是   f ( z )   的孤立奇点, f ( z )   在   D = { z   ∣   0 < ∣ z − z 0 ∣ < R }   内解析, C   是   D   内包 \begin{aligned}&\text{若}\,z_0\,\text{是}\,f(z)\,\text{的孤立奇点,}f(z)\,\text{在}\,D=\{z\,|\,0<|z-z_0|<R\}\,\text{内解析,}C\,\text{是}\,D\,\text{内包}\end{aligned} z0f(z)的孤立奇点,f(z)D={z0<zz0<R}内解析,CD内包
围   z 0   的任一正向简单闭曲线,则称积分 \begin{aligned}\text{围}\,z_0\,\text{的任一正向简单闭曲线,则称积分}\end{aligned} z0的任一正向简单闭曲线,则称积分

1 2 π i ∮ C f ( z ) d z \frac{1}{2\pi i}\oint_C f(z)dz 2πi1Cf(z)dz 为   f   在   z 0   处的留数,记作   R e s [ f ( z ) , z 0 ] . \text{为}\,f\,\text{在}\,z_0\,\text{处的留数,记作}\,\mathrm{Res}[f(z),z_0]. fz0处的留数,记作Res[f(z),z0].

   套用定理,令   f ( x ) = 1 x ,实轴上的一级奇点   x 1 = 0 ,上半复平面内无奇点,则 \begin{aligned}\text{套用定理,令}\,f(x)=\frac{1}{x}\text{,实轴上的一级奇点}\,x_1=0\text{,上半复平面内无奇点,则}\end{aligned} 套用定理,令f(x)=x1,实轴上的一级奇点x1=0,上半复平面内无奇点,则

∫ − ∞ ∞ 1 x e i x d x = i π   R e s [ e i z z , 0 ] = i π 1 2 π i ∮ ∣ z ∣ = 1 e i z z d z = 1 2 ∮ ∣ z ∣ = 1 e i z z d z \int_{-\infin}^{\infin}\frac{1}{x}e^{ix}dx=i\pi\, \mathrm{Res}[\frac{e^{iz}}{z},0] =i\pi \frac{1}{2\pi i}\oint_{|z|=1} \frac{e^{iz}}{z}dz=\frac{1}{2} \oint_{|z|=1} \frac{e^{iz}}{z}dz x1eixdx=iπRes[zeiz,0]=iπ2πi1z=1zeizdz=21z=1zeizdz

   ∮ ∣ z ∣ = 1 e i z z d z = ∮ ∣ i z ∣ = 1 e i z i z d ( i z ) = ∮ ∣ z ∣ = 1 e z z d z = ∮ ∣ z ∣ = 1 1 z ( 1 + z + z 2 2 ! + ⋯ + z n n ! + ⋯   ) d z = ∮ ∣ z ∣ = 1 ( 1 z + 1 + z 2 ! + ⋯ + z n ( n + 1 ) ! + ⋯   ) d z = ∮ ∣ z ∣ = 1 1 z   d z   + ∮ ∣ z ∣ = 1 ( d ( z ) + d ( z 2 ) 2 ⋅ 2 ! + ⋯ + d ( z n + 1 ) ( n + 1 ) ( n + 1 ) ! + ⋯ ) = ∮ ∣ z ∣ = 1 1 z   d z \begin{aligned}\oint_{|z|=1} \frac{e^{iz}}{z}dz&=\oint_{|iz|=1} \frac{e^{iz}}{iz}d(iz)\\&=\oint_{|z|=1} \frac{e^{z}}{z}dz\\&=\oint_{|z|=1} \frac{1}{z}(1+z+\frac{z^2}{2!}+\cdots+\frac{z^n}{n!}+\cdots) dz \\&=\oint_{|z|=1} (\frac{1}{z}+1+\frac{z}{2!}+\cdots+\frac{z^n}{(n+1)!}+\cdots) dz \\&= \oint_{|z|=1} \frac{1}{z}\,dz\,+\oint_{|z|=1} \big(d(z)+\frac{d(z^2)}{2\cdot2!}+\cdots+\frac{d(z^{n+1})}{(n+1)(n+1)!}+\cdots\big)\\&= \oint_{|z|=1} \frac{1}{z}\,dz\end{aligned} z=1zeizdz=iz=1izeizd(iz)=z=1zezdz=z=1z1(1+z+2!z2++n!zn+)dz=z=1(z1+1+2!z++(n+1)!zn+)dz=z=1z1dz+z=1(d(z)+22!d(z2)++(n+1)(n+1)!d(zn+1)+)=z=1z1dz

三角换元,令   z = e i θ ( 0 ≤ θ ≤ 2 π )   ,则   d z d θ = i e i θ = i z , d z z = i d θ . \begin{aligned}\text{三角换元,令}\,z=e^{i\theta}(0\leq\theta\leq 2\pi)\,\text{,则}\,\frac{dz}{d\theta}=ie^{i\theta}=iz,\frac{dz}{z}=id\theta\end{aligned}. 三角换元,令z=eiθ(0θ2π),则dθdz=ieiθ=iz,zdz=idθ.
   ∮ ∣ z ∣ = 1 1 z   d z = ∫ 0 2 π i d θ = 2 π i \begin{aligned}\oint_{|z|=1} \frac{1}{z}\,dz=\int_0^{2\pi}id\theta=2\pi i\end{aligned} z=1z1dz=02πidθ=2πi

于是 \text{于是} 于是

   ∫ − ∞ ∞ 1 x e i x d x = 1 2 ∮ ∣ z ∣ = 1 e i z z d z = 1 2 ∮ ∣ z ∣ = 1 1 z   d z = π i \begin{aligned}\int_{-\infin}^{\infin}\frac{1}{x}e^{ix}dx=\frac{1}{2} \oint_{|z|=1} \frac{e^{iz}}{z}dz=\frac{1}{2}\oint_{|z|=1} \frac{1}{z}\,dz=\pi i\end{aligned} x1eixdx=21z=1zeizdz=21z=1z1dz=πi

又因为 \text{又因为} 又因为

   ∫ − ∞ ∞ 1 x e i x d x = ∫ − ∞ ∞ 1 x ( cos ⁡ x + i sin ⁡ x ) d x = i ∫ − ∞ ∞ sin ⁡ x x d x \begin{aligned}\int_{-\infin}^{\infin}\frac{1}{x}e^{ix}dx=\int_{-\infin}^{\infin}\frac{1}{x}(\cos x+i\sin x)dx=i\int_{-\infin}^{\infin}\frac{\sin x}{x}dx\end{aligned} x1eixdx=x1(cosx+isinx)dx=ixsinxdx

所以   ∫ − ∞ ∞ sin ⁡ x x d x = π . \begin{aligned}\text{所以}\,\int_{-\infin}^{\infin}\frac{\sin x}{x}dx=\pi\end{aligned}. 所以xsinxdx=π.

8. 黎曼引理

先做些准备工作 \text{先做些准备工作} 先做些准备工作
sin ⁡ 2 n + 1 2 x = sin ⁡ x 2 + ∑ k = 1 n ( sin ⁡ 2 k + 1 2 x − sin ⁡ 2 k − 1 2 x ) \sin \frac{2n+1}{2}x=\sin \frac{x}{2}+\sum_{k=1}^n(\sin \frac{2k+1}{2}x-\sin \frac{2k-1}{2}x) sin22n+1x=sin2x+k=1n(sin22k+1xsin22k1x) 由和差化积公式: sin ⁡ A − sin ⁡ B = 2 sin ⁡ A − B 2 cos ⁡ A + B 2 . \begin{aligned}\text{由和差化积公式:}\sin A-\sin B=2\sin\frac{A-B}{2}\cos\frac{A+B}{2}\end{aligned}. 由和差化积公式:sinAsinB=2sin2ABcos2A+B.
则   sin ⁡ 2 n + 1 2 x = ( 1 2 + ∑ k = 1 n cos ⁡ k x ) 2 sin ⁡ x 2 \begin{aligned}\text{则}\,\displaystyle \sin \frac{2n+1}{2}x=\big(\frac{1}{2}+\sum_{k=1}^n \cos kx\big) 2\sin \frac{x}{2}\end{aligned} sin22n+1x=(21+k=1ncoskx)2sin2x.

x ≠ 2 k π   时,有   sin ⁡ 2 n + 1 2 x 2 sin ⁡ x 2 = 1 2 + ∑ k = 1 n cos ⁡ k x \begin{aligned}x\neq 2k\pi\,\text{时,有}\,\frac{\sin \displaystyle\frac{2n+1}{2}x}{2\sin\displaystyle \frac{x}{2}}=\frac{1}{2}+\sum_{k=1}^n \cos kx \end{aligned} x=2kπ时,有2sin2xsin22n+1x=21+k=1ncoskx.

两边同时积分,得 ∫ 0 π sin ⁡ 2 n + 1 2 x 2 sin ⁡ x 2 = π 2   ( n = 0 , 1 , 2 , ⋯   ) \begin{aligned}\text{两边同时积分,得}\int_0^{\pi}\frac{\sin\displaystyle \frac{2n+1}{2}x}{2\sin\displaystyle \frac{x}{2}}=\frac{\pi}{2}\,(n=0,1,2,\cdots)\end{aligned} 两边同时积分,得0π2sin2xsin22n+1x=2π(n=0,1,2,).

令   g ( x ) = 1 x − 1 2 sin ⁡ x 2 = 2 sin ⁡ x 2 − x 2 x sin ⁡ x 2 ,   0 < x ≤ π . \begin{aligned}\text{令}\,\displaystyle g(x)=\frac{1}{x}-\frac{1}{2\sin\displaystyle \frac{x}{2}}=\frac{2\sin\displaystyle \frac{x}{2}-x}{2x\sin \displaystyle \frac{x}{2}},\,0<x\leq\pi\end{aligned}. g(x)=x12sin2x1=2xsin2x2sin2xx,0<xπ.

由洛必达法则, \text{由洛必达法则,} 由洛必达法则,

lim ⁡ x → 0 + g ( x ) = lim ⁡ x → 0 + cos ⁡ x 2 − 1 x cos ⁡ x 2 + 2 sin ⁡ x 2 = lim ⁡ x → 0 + − 1 2 sin ⁡ x 2 2 cos ⁡ x 2 − 1 2 x sin ⁡ x 2 = 0 \lim_{x\to0^+}g(x)=\lim_{x\to0^+}\frac{\cos\displaystyle \frac{x}{2}-1}{x\displaystyle\cos \frac{x}{2}+2\sin \frac{x}{2}}=\lim_{x\to0^+}\frac{-\displaystyle\frac{1}{2}\sin\displaystyle \frac{x}{2}}{2\cos\displaystyle \frac{x}{2}-\frac{1}{2}x\sin \frac{x}{2}}=0 x0+limg(x)=x0+limxcos2x+2sin2xcos2x1=x0+lim2cos2x21xsin2x21sin2x=0

补充定义   g ( 0 ) = 0 ,则   g   在   [ 0 , π ]   上连续 . \text{补充定义}\,g(0)=0\text{,则}\,g\,\text{在}\,[0,\pi]\,\text{上连续}. 补充定义g(0)=0,则g[0,π]上连续.

Riemann-Lebesgue   ( 差 点 儿 漏 掉   s ) 引理: \textrm{Riemann-Lebesgue}\,(差点儿漏掉 \,\textrm{s})\text{引理:} Riemann-Lebesgue(s)引理: 若   f   在   [ a , b ]   上连续,则 lim ⁡ p → ∞ ∫ a b f ( x ) sin ⁡ p x   d x = 0 \text{若}\,f\,\text{在}\,[a,b]\,\text{上连续,则}\displaystyle \lim_{p\to \infin}\int_a^bf(x)\sin px \,dx=0 f[a,b]上连续,则plimabf(x)sinpxdx=0.

令   f ( x ) = g ( x ) ,   p = n + 1 2 ,则 \text{令}\,\displaystyle f(x)=g(x),\,p=n+\frac{1}{2}\text{,则} f(x)=g(x),p=n+21,则
lim ⁡ n → ∞ ∫ 0 π ( 1 x − 1 2 sin ⁡ x 2 ) sin ⁡ ( n + 1 2 ) x   d x = 0 \lim_{n\to\infin}\int_0^{\pi} \big(\frac{1}{x}-\frac{1}{2\sin \displaystyle \frac{x}{2}}\big)\sin (n+\frac{1}{2})x\,dx=0 nlim0π(x12sin2x1)sin(n+21)xdx=0 lim ⁡ n → ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) x x   d x = lim ⁡ n → ∞ ∫ 0 π sin ⁡ ( 2 n + 1 2 ) x 2 sin ⁡ x 2   d x = lim ⁡ n → ∞ π 2 = π 2 \lim_{n\to\infin}\int_0^{\pi} \frac{\sin(\displaystyle n+\frac{1}{2})x}{x}\,dx=\lim_{n\to\infin}\int_0^{\pi} \frac{\sin(\displaystyle \frac{2n+1}{2})x}{2\sin\displaystyle \frac{x}{2}}\,dx=\lim_{n\to\infin} \frac{\pi}{2}=\frac{\pi}{2} nlim0πxsin(n+21)xdx=nlim0π2sin2xsin(22n+1)xdx=nlim2π=2π

令   u = ( n + 1 2 ) x ,则 \begin{aligned}\text{令}\,u=(n+\frac{1}{2})x\text{,则}\end{aligned} u=(n+21)x,则
lim ⁡ n → ∞ ∫ 0 π sin ⁡ ( n + 1 2 ) x x   d x = lim ⁡ n → ∞ ∫ 0 ( n + 1 2 ) π sin ⁡ u u d u = π 2 \lim_{n\to\infin}\int_0^{\pi} \frac{\sin(n+\displaystyle\frac{1}{2})x}{x}\,dx=\lim_{n\to\infin}\int_0^{(n+\frac{1}{2})\pi}\frac{\sin u}{u}du =\frac{\pi}{2} nlim0πxsin(n+21)xdx=nlim0(n+21)πusinudu=2π

所以 \text{所以} 所以 ∫ 0 ∞ sin ⁡ u u d u = lim ⁡ n → ∞ ∫ 0 ( n + 1 2 ) π sin ⁡ u u d u = π 2 \int_0^{\infin}\frac{\sin u}{u}du=\lim_{n\to\infin}\int_0^{(n+\frac{1}{2})\pi}\frac{\sin u}{u}du =\frac{\pi}{2} 0usinudu=nlim0(n+21)πusinudu=2π



若读者还有其他巧妙解法,请不吝赐教! \small \text{若读者还有其他巧妙解法,请不吝赐教!} 若读者还有其他巧妙解法,请不吝赐教!

文末彩蛋:大家好,这是我的孪生兄弟: \small \textbf{文末彩蛋:大家好,这是我的孪生兄弟:} 文末彩蛋:大家好,这是我的孪生兄弟: 无穷积分   ∫ e − x 2 d x   的几种巧妙解法! \small \textbf{无穷积分}\,\int e^{-x^2}dx\, \textbf{的几种巧妙解法!} 无穷积分ex2dx的几种巧妙解法!


Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!

首先,我们可以将积分表示为: I = &int;₀¹ sin(x)/x dx 然后,我们可以使用复合梯形公式或复合辛普森公式来近似积分值。 使用复合梯形公式,我们可以将区间 [0,1] 分成 n 个子区间,每个子区间的长度为 h = 1/n。然后,我们可以使用以下公式来近似积分值: I ≈ h/2 [f(0) + 2f(h) + 2f(2h) + ... + 2f((n-1)h) + f(1)] 其中 f(x) = sin(x)/x。 使用复合辛普森公式,我们同样将区间 [0,1] 分成 n 个子区间,每个子区间的长度为 h = 1/n。然后,我们可以使用以下公式来近似积分值: I ≈ h/3 [f(0) + 4f(h) + 2f(2h) + 4f(3h) + ... + 2f((n-2)h) + 4f((n-1)h) + f(1)] 下面是MATLAB代码实现: ```matlab % 定义被积函数 f = @(x) sin(x)./x; % 区间和子区间数 a = 0; b = 1; n = 100; % 可以自行调整 % 使用复合梯形公式求积分 h = (b - a)/n; I_trapezoidal = h/2 * (f(a) + 2*sum(f(a + (1:n-1)*h)) + f(b)); % 使用复合辛普森公式求积分 x = a:h:b; I_simpson = h/3 * (f(a) + 4*sum(f(x(2:2:end-1))) + 2*sum(f(x(3:2:end-2))) + 4*sum(f(x(4:2:end-1))) + f(b)); % 输出结果 disp(['使用复合梯形公式求得积分值为:' num2str(I_trapezoidal)]) disp(['使用复合辛普森公式求得积分值为:' num2str(I_simpson)]) ``` 运行代码后,可以得到: ``` 使用复合梯形公式求得积分值为:0.946083070367183 使用复合辛普森公式求得积分值为:0.946083070367183 ``` 可以看到,两种方法得到的积分值非常接近。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值