
狄利克雷积分 ∫ 0 ∞ sin x x d x \,\displaystyle \int_{0}^{\infin}\frac{\sin x}{x}dx\, ∫0∞xsinxdx 是一个比较常见的无穷积分,在很多领域有着重要应用。
下面介绍几种巧妙解法。为了您更好的阅读体验,请使用电脑浏览。
1. Fourier 正弦展开
∫
0
∞
sin
x
x
d
x
=
lim
m
→
∞
∫
0
m
π
sin
x
x
d
x
\int_{0}^{\infin}\frac{\sin x}{x}dx=\lim_{m\to\infin}\int_0^{m\pi}\frac{\sin x}{x}dx
∫0∞xsinxdx=m→∞lim∫0mπxsinxdx
令
h
=
π
/
k
,将区间
[
0
,
m
π
]
分割成
k
m
个长度为
h
的小区间,由黎曼积分的定义
\text{令}\,h=\pi/k\text{,将区间}\,[0,m\pi]\,\text{分割成}\,km\,\text{个长度为}\,h\,\text{的小区间,由黎曼积分的定义}
令h=π/k,将区间[0,mπ]分割成km个长度为h的小区间,由黎曼积分的定义
∫
0
m
π
sin
x
x
d
x
=
lim
h
→
0
+
∑
n
=
1
k
m
sin
n
h
n
h
h
=
lim
h
→
0
+
∑
n
=
1
k
m
sin
n
h
n
\int_0^{m\pi}\frac{\sin x}{x}dx=\lim_{h\to0^+}\sum_{n=1}^{km}\frac{\sin nh}{nh}h=\lim_{h\to0^+}\sum_{n=1}^{km}\frac{\sin nh}{n}
∫0mπxsinxdx=h→0+limn=1∑kmnhsinnhh=h→0+limn=1∑kmnsinnh
由
Fourier
正弦展开
\text{由}\,\textrm{Fourier}\,\text{正弦展开}
由Fourier正弦展开
π
−
h
2
=
∑
n
=
1
∞
sin
n
h
n
,
(
0
<
h
<
π
)
\frac{\pi-h}{2}=\sum_{n=1}^{\infin}\frac{\sin nh}{n},(0<h<\pi)
2π−h=n=1∑∞nsinnh,(0<h<π)
所以
\text{所以}
所以
∫
0
∞
sin
x
x
d
x
=
lim
m
→
∞
∫
0
m
π
sin
x
x
d
x
=
lim
m
→
∞
lim
h
→
0
+
∑
n
=
1
k
m
sin
n
h
n
=
lim
h
→
0
+
lim
m
→
∞
∑
n
=
1
k
m
sin
n
h
n
=
lim
h
→
0
+
π
−
h
2
=
π
2
\begin{aligned}\int_{0}^{\infin}\frac{\sin x}{x}dx&=\lim_{m\to\infin}\int_0^{m\pi}\frac{\sin x}{x}dx\\&=\lim_{m\to\infin}\lim_{h\to0^+}\sum_{n=1}^{km}\frac{\sin nh}{n}\\&=\lim_{h\to0^+}\lim_{m\to\infin}\sum_{n=1}^{km}\frac{\sin nh}{n}\\&=\lim_{h\to0^+}\frac{\pi-h}{2}\\&=\frac{\pi}{2}\end{aligned}
∫0∞xsinxdx=m→∞lim∫0mπxsinxdx=m→∞limh→0+limn=1∑kmnsinnh=h→0+limm→∞limn=1∑kmnsinnh=h→0+lim2π−h=2π
2. 交换积分次序
∫
0
∞
sin
x
x
d
x
=
∫
0
∞
sin
x
1
x
d
x
=
∫
0
∞
sin
x
(
∫
0
∞
e
−
x
y
d
y
)
d
x
(
交换积分次序
)
=
∫
0
∞
(
∫
0
∞
e
−
y
x
sin
x
d
x
)
d
y
∫
0
∞
e
−
y
x
sin
x
d
x
=
∫
0
∞
e
−
y
x
1
2
i
(
e
i
x
−
e
−
i
x
)
d
x
=
1
2
i
∫
0
∞
(
e
−
(
y
−
i
)
x
−
e
−
(
y
+
i
)
x
)
d
x
=
1
2
i
(
−
1
y
−
i
e
−
(
y
−
i
)
x
+
1
y
+
i
e
−
(
y
+
i
)
x
)
∣
0
∞
=
1
2
i
(
1
y
−
i
−
1
y
+
i
)
=
1
y
2
+
1
\begin{aligned}\int_{0}^{\infin}\frac{\sin x}{x}\,dx&=\int_{0}^{\infin}\sin x\,\frac{1}{x}\,dx\\&=\int_{0}^{\infin}\sin x\big(\int_{0}^{\infin}e^{-xy}dy\big)dx \quad(\text{交换积分次序})\\&=\int_{0}^{\infin}\big(\int_{0}^{\infin}e^{-yx}\sin x\,dx\big)dy \\ \\\int_{0}^{\infin}e^{-yx}\sin x\,dx&=\int_{0}^{\infin}e^{-yx}\frac{1}{2i}(e^{ix}-e^{-ix})dx\\&=\frac{1}{2i}\int_{0}^{\infin}(e^{-(y-i)x}-e^{-(y+i)x})dx\\&=\frac{1}{2i}\big(-\frac{1}{y-i}e^{-(y-i)x}+\frac{1}{y+i}e^{-(y+i)x}\big)\Big|_0^\infin\\&=\frac{1}{2i}\big(\frac{1}{y-i}-\frac{1}{y+i}\big)\\&=\frac{1}{y^2+1}\end{aligned}
∫0∞xsinxdx∫0∞e−yxsinxdx=∫0∞sinxx1dx=∫0∞sinx(∫0∞e−xydy)dx(交换积分次序)=∫0∞(∫0∞e−yxsinxdx)dy=∫0∞e−yx2i1(eix−e−ix)dx=2i1∫0∞(e−(y−i)x−e−(y+i)x)dx=2i1(−y−i1e−(y−i)x+y+i1e−(y+i)x)∣∣∣0∞=2i1(y−i1−y+i1)=y2+11
∴
原式
=
∫
0
∞
1
y
2
+
1
d
y
=
arctan
y
∣
0
∞
=
π
2
.
\begin{aligned} \therefore\,\, \text{原式}=\int_{0}^{\infin}\frac{1}{y^2+1}dy=\arctan y\,\Big|_0^{\infin} =\frac{\pi}{2}\end{aligned}.
∴原式=∫0∞y2+11dy=arctany∣∣∣0∞=2π.
3. 构造含参变量函数
记
I
=
∫
0
∞
sin
t
t
d
t
,构造函数
f
(
x
)
=
∫
0
∞
e
−
x
t
sin
t
t
d
t
,则
f
(
0
)
=
I
.
\begin{aligned}\text{记}\,I=\int_{0}^{\infin}\frac{\sin t}{t}\,dt\text{,构造函数}\,f(x)=\int_{0}^{\infin}e^{-xt}\frac{\sin t}{t}\,dt\text{,则}\,f(0)=I\end{aligned}.
记I=∫0∞tsintdt,构造函数f(x)=∫0∞e−xttsintdt,则f(0)=I.
0
≤
∣
f
(
x
)
∣
≤
∫
0
∞
e
−
x
t
∣
sin
t
t
∣
d
t
≤
∫
0
∞
e
−
x
t
d
t
=
1
x
0\leq\big|f(x)\big|\leq\int_{0}^{\infin}e^{-xt}\bigg|\frac{\sin t}{t}\bigg|dt \leq \int_{0}^{\infin}e^{-xt}dt=\frac{1}{x}
0≤∣∣f(x)∣∣≤∫0∞e−xt∣∣∣∣tsint∣∣∣∣dt≤∫0∞e−xtdt=x1
两边取极限, x → ∞ , f ( ∞ ) = 0. \text{两边取极限,}x\to\infin,\,f(\infin)=0. 两边取极限,x→∞,f(∞)=0.
f ′ ( x ) = ∫ 0 ∞ ∂ ∂ x ( e − x t sin t t ) d t = − ∫ 0 ∞ e − x t sin t d t = − 1 x 2 + 1 ( 由上一方法中的结果 ) \begin{aligned}f'(x)&=\int_{0}^{\infin}\frac{\partial }{\partial x}\Big( e^{-xt}\frac{\sin t}{t}\Big)dt\\&=-\int_{0}^{\infin}e^{-xt}\sin t \,dt\\&=-\frac{1}{x^2+1} \quad (\text{由上一方法中的结果})\end{aligned} f′(x)=∫0∞∂x∂(e−xttsint)dt=−∫0∞e−xtsintdt=−x2+11(由上一方法中的结果)
由牛顿-莱布尼兹公式
\text{由牛顿-莱布尼兹公式}
由牛顿-莱布尼兹公式
0
−
I
=
f
(
∞
)
−
f
(
0
)
=
∫
0
∞
f
′
(
x
)
d
x
=
−
∫
0
∞
1
x
2
+
1
d
x
=
−
arctan
x
∣
0
∞
=
−
π
2
0-I=f(\infin)-f(0)=\int_0^{\infin}f'(x)dx=-\int_0^{\infin}\frac{1}{x^2+1} dx =-\arctan x \,\bigg|_0^{\infin}=-\frac{\pi}{2}
0−I=f(∞)−f(0)=∫0∞f′(x)dx=−∫0∞x2+11dx=−arctanx∣∣∣∣0∞=−2π
所以
I
=
π
2
.
\begin{aligned}\text{所以}\,I=\frac{\pi}{2}\end{aligned}.
所以I=2π.
4. Laplace 变换
令
f
(
t
)
=
∫
0
∞
sin
t
x
x
d
x
,
t
>
0
,对
f
(
t
)
作拉普拉斯变换,令
\begin{aligned}\text{令}\,f(t)=\int_{0}^{\infin}\frac{\sin tx}{x}\,dx,\, t>0\text{,对}\,f(t)\, \text{作拉普拉斯变换,令}\end{aligned}
令f(t)=∫0∞xsintxdx,t>0,对f(t)作拉普拉斯变换,令
F
(
s
)
=
L
[
f
(
t
)
]
=
L
[
∫
0
∞
sin
t
x
x
d
x
]
t
=
∫
0
∞
1
x
L
[
sin
t
x
]
t
d
x
=
∫
0
∞
1
s
2
+
x
2
d
x
=
1
s
∫
0
∞
1
1
+
(
x
s
)
2
d
(
x
s
)
(
let
u
=
x
s
)
=
1
s
arctan
u
∣
0
∞
=
1
s
π
2
\begin{aligned}F(s)=\mathscr{L}[f(t)]&=\mathscr{L}\Big[\int_{0}^{\infin}\frac{\sin tx}{x}dx\Big]_t\\&=\int_{0}^{\infin} \frac{1}{x}\mathscr{L}\big[\sin tx \big]_tdx\\&=\int_{0}^{\infin}\frac{1}{s^2+x^2}\,dx\\&=\frac{1}{s}\int_{0}^{\infin}\frac{1}{1+(\displaystyle \frac{x}{s})^2}\,d(\frac{x}{s}) \quad (\textit{let u = $\displaystyle \frac{x}{s}$})\\&=\frac{1}{s}\arctan u\,\Big|_0^{\infin}\\&=\frac{1}{s}\frac{\pi}{2}\end{aligned}
F(s)=L[f(t)]=L[∫0∞xsintxdx]t=∫0∞x1L[sintx]tdx=∫0∞s2+x21dx=s1∫0∞1+(sx)21d(sx)(let u = sx)=s1arctanu∣∣∣0∞=s12π
则
f
(
t
)
=
L
−
1
[
F
(
s
)
]
=
π
2
L
−
1
[
1
s
]
=
π
2
.
\begin{aligned}\text{则}\,\, f(t)=\mathscr{L}^{-1}\big[F(s)\big]=\frac{\pi}{2}\mathscr{L}^{-1}\big[\frac{1}{s}\big]=\frac{\pi}{2}\end{aligned}.
则f(t)=L−1[F(s)]=2πL−1[s1]=2π.
令人惊奇的是,
f
(
t
)
的值竟与
t
无关,于是我们得到一个更为普遍的结论
\begin{aligned}\text{令人惊奇的是,}f(t)\, \text{的值竟与} \,t\, \text{无关,于是我们得到一个更为普遍的结论}\end{aligned}
令人惊奇的是,f(t)的值竟与t无关,于是我们得到一个更为普遍的结论
∫
0
∞
sin
t
x
x
d
x
=
π
2
,
t
>
0
\int_0^{\infin}\frac{\sin tx}{x}\,dx=\frac{\pi}{2},\,t>0
∫0∞xsintxdx=2π,t>0
如果你也觉得不可思议的话,不妨看看我的解释
\text{如果你也觉得不可思议的话,不妨看看我的解释}
如果你也觉得不可思议的话,不妨看看我的解释
f
′
(
t
)
=
∫
0
∞
∂
∂
t
(
sin
t
x
x
)
d
x
=
∫
0
∞
cos
t
x
d
x
=
lim
n
→
∞
∫
0
n
π
/
t
cos
t
x
d
x
(
l
e
t
u
=
t
x
)
=
lim
n
→
∞
1
t
∫
0
n
π
cos
u
d
u
=
1
t
lim
n
→
∞
sin
u
∣
0
n
π
=
0
\begin{aligned}f'(t)&=\int_0^{\infin}\frac{\partial }{\partial t}\Big(\frac{\sin tx}{x}\Big)dx \\&=\int_0^{\infin}\cos tx\,dx\\&=\lim_{n\to\infin}\int_0^{n\pi/t}\cos tx\,dx \quad (let\,\, u=tx)\\&=\lim_{n\to\infin}\frac{1}{t}\int_0^{n\pi}\cos u\,du\\&=\frac{1}{t}\lim_{n\to\infin} \sin u\,\Big|_0^{n\pi}\\&=0\end{aligned}
f′(t)=∫0∞∂t∂(xsintx)dx=∫0∞costxdx=n→∞lim∫0nπ/tcostxdx(letu=tx)=n→∞limt1∫0nπcosudu=t1n→∞limsinu∣∣∣0nπ=0
所以
f
(
t
)
=
C
,
与
t
无关
.
\text{所以}\,f(t)=C,\,\text{与}\,t\,\text{无关}.
所以f(t)=C,与t无关.
5. Fourier 变换
令 \text{令} 令 f ( t ) = { 1 , ∣ t ∣ < 1 0 , ∣ t ∣ ≥ 1 f(t)=\begin{cases}1,\,\,|t|<1 \\ 0,\,\,|t|\geq1\end{cases} f(t)={1,∣t∣<10,∣t∣≥1 ,对 f ( t ) 作傅里叶变换,令 \text{,对} \,f(t)\, \text{作傅里叶变换,令} ,对f(t)作傅里叶变换,令
F
(
μ
)
=
F
[
f
(
t
)
]
=
∫
−
∞
∞
f
(
t
)
e
−
i
μ
t
d
t
=
∫
−
1
1
e
−
i
μ
t
d
t
=
−
1
i
μ
e
−
i
μ
t
∣
−
1
1
=
2
μ
1
2
i
(
e
i
μ
−
e
−
i
μ
)
=
2
sin
μ
μ
\begin{aligned}F(\mu)&=\mathscr{F}[f(t)]\\&=\int_{-\infin}^{\infin} f(t)e^{-i\mu t}dt\\&=\int_{-1}^{1} e^{-i\mu t}dt\\&=-\frac{1}{i\mu}e^{-i\mu t}\Big|_{-1}^{1}\\&=\frac{2}{\mu}\frac{1}{2i}(e^{i\mu}-e^{-i\mu})\\&=2\,\frac{\sin \mu}{\mu}\end{aligned}
F(μ)=F[f(t)]=∫−∞∞f(t)e−iμtdt=∫−11e−iμtdt=−iμ1e−iμt∣∣∣−11=μ22i1(eiμ−e−iμ)=2μsinμ
则
f
(
t
)
=
F
−
1
[
F
(
μ
)
]
=
1
2
π
∫
−
∞
∞
2
sin
μ
μ
e
i
μ
t
d
μ
.
\begin{aligned}\text{则}\,f(t)=\mathscr{F}^{-1}\big[F(\mu)\big]=\frac{1}{2\pi}\int_{-\infin}^{\infin}2\,\frac{\sin \mu}{\mu}e^{i\mu t}d\mu.\end{aligned}
则f(t)=F−1[F(μ)]=2π1∫−∞∞2μsinμeiμtdμ.
取
t
=
0
,则
\text{取}\,t=0\text{,则}
取t=0,则
1
=
f
(
0
)
=
1
π
∫
−
∞
∞
sin
μ
μ
d
μ
=
2
π
∫
0
∞
sin
μ
μ
d
μ
1=f(0)=\frac{1}{\pi}\int_{-\infin}^{\infin}\frac{\sin \mu}{\mu}\,d\mu=\frac{2}{\pi}\int_{0}^{\infin}\frac{\sin \mu}{\mu}\,d\mu
1=f(0)=π1∫−∞∞μsinμdμ=π2∫0∞μsinμdμ
所以
∫
0
∞
sin
μ
μ
d
μ
=
π
2
.
妙哉!
.
\begin{aligned}\text{所以}\,\int_{0}^{\infin}\frac{\sin \mu}{\mu}\,d\mu=\frac{\pi}{2}.\quad\text{妙哉!}\end{aligned}.
所以∫0∞μsinμdμ=2π.妙哉!.
6. 狄拉克函数
首先来介绍一下狄拉克函数(就是 Dirac 创造的函数),也称脉冲函数(比较形象): \text{首先来介绍一下狄拉克函数(就是 \text{Dirac}\,创造的函数),也称脉冲函数(比较形象):} 首先来介绍一下狄拉克函数(就是 Dirac创造的函数),也称脉冲函数(比较形象):
δ ( t ) = { ∞ , t = 0 0 , t ≠ 0 ,且满足 ∫ − ∞ ∞ δ ( t ) d t = 1. \delta(t)=\begin{cases}\infin,&t=0 \\0,&t\neq 0\end{cases}\,\text{,且满足}\,\displaystyle\int_{-\infin}^{\infin}\delta(t)dt=1. δ(t)={∞,0,t=0t=0,且满足∫−∞∞δ(t)dt=1.
容易验证: ∫ − ∞ ∞ δ ( t ) f ( t ) d t = f ( 0 ) . \text{容易验证:}\displaystyle\int_{-\infin}^{\infin}\delta(t)f(t)dt=f(0). 容易验证:∫−∞∞δ(t)f(t)dt=f(0).
取 f ( t ) = e − i μ t , f ( 0 ) = 1. \text{取}\,f(t)=e^{-i\mu t},\,f(0)=1. 取f(t)=e−iμt,f(0)=1.
则脉冲函数的傅里叶变换 F ( μ ) = F [ δ ( t ) ] = ∫ − ∞ ∞ δ ( t ) e − i μ t d t = 1 \text{则脉冲函数的傅里叶变换}\,\,\displaystyle F(\mu)=\mathscr{F}[\delta(t)]=\int_{-\infin}^{\infin} \delta(t)e^{-i\mu t}dt=1 则脉冲函数的傅里叶变换F(μ)=F[δ(t)]=∫−∞∞δ(t)e−iμtdt=1.
作傅里叶反变换 δ ( t ) = F − 1 [ F ( μ ) ] = 1 2 π ∫ − ∞ ∞ e i μ t d μ . \text{作傅里叶反变换}\,\,\displaystyle\delta(t)=\mathscr{F}^{-1}\big[F(\mu)\big]=\frac{1}{2\pi}\int_{-\infin}^{\infin} e^{i\mu t}d\mu. 作傅里叶反变换δ(t)=F−1[F(μ)]=2π1∫−∞∞eiμtdμ.
准备工作完成,构造函数 \text{准备工作完成,构造函数} 准备工作完成,构造函数 g ( λ ) = ∫ − ∞ ∞ sin λ x x d x ,则 g ( 1 ) = ∫ − ∞ ∞ sin x x d x . \,\displaystyle g(\lambda)=\int_{-\infin}^{\infin}\frac{\sin \lambda x}{x}dx\text{,则}\,g(1)=\int_{-\infin}^{\infin}\frac{\sin x}{x}dx. g(λ)=∫−∞∞xsinλxdx,则g(1)=∫−∞∞xsinxdx.
g ′ ( λ ) = ∫ − ∞ ∞ ∂ ∂ λ ( sin λ x x ) d x = ∫ − ∞ ∞ cos λ x d x + 0 = ∫ − ∞ ∞ cos λ x d x + i ∫ − ∞ ∞ sin λ x d x = ∫ − ∞ ∞ e i λ x d x = 2 π ( 1 2 π ∫ − ∞ ∞ e i λ x d x ) = 2 π δ ( λ ) \begin{aligned}g'(\lambda)&=\int_{-\infin}^{\infin}\frac{\partial }{\partial \lambda}\Big( \frac{\sin \lambda x}{x}\Big)dx\\&=\int_{-\infin}^{\infin}\cos \lambda xdx+0\\&=\int_{-\infin}^{\infin}\cos \lambda x dx+i\int_{-\infin}^{\infin}\sin \lambda x dx\\&=\int_{-\infin}^{\infin}e^{i\lambda x}dx\\&=2\pi \big(\frac{1}{2\pi}\int_{-\infin}^{\infin}e^{i\lambda x}dx\big)\\&=2\pi \delta(\lambda)\end{aligned} g′(λ)=∫−∞∞∂λ∂(xsinλx)dx=∫−∞∞cosλxdx+0=∫−∞∞cosλxdx+i∫−∞∞sinλxdx=∫−∞∞eiλxdx=2π(2π1∫−∞∞eiλxdx)=2πδ(λ)
因为 g ( λ ) 是奇函数,所以 \text{因为}\,g(\lambda)\,\text{是奇函数,所以} 因为g(λ)是奇函数,所以
g
(
1
)
=
−
g
(
−
1
)
=
1
2
(
g
(
1
)
−
g
(
−
1
)
)
(
由
N
-
L
公式
)
=
1
2
∫
−
1
1
g
′
(
λ
)
d
λ
=
1
2
∫
−
1
1
2
π
δ
(
λ
)
d
λ
(
δ
(
λ
)
=
0
,
λ
≠
0
)
=
π
∫
−
∞
∞
δ
(
λ
)
d
λ
=
π
\begin{aligned}g(1)&=-g(-1)\\&=\frac{1}{2}\big(\,g(1)-g(-1)\,\big) \quad (\text{由}\, N\text{-}L\, \text{公式})\\&=\frac{1}{2} \int_{-1}^{1}g'(\lambda)d\lambda\\&=\frac{1}{2} \int_{-1}^{1} 2\pi \delta(\lambda) d\lambda \quad\,\,\,\, (\delta(\lambda)=0,\,\lambda\neq0)\\&=\pi \int_{-\infin}^{\infin}\delta(\lambda)d\lambda\\&=\pi\end{aligned}
g(1)=−g(−1)=21(g(1)−g(−1))(由N-L公式)=21∫−11g′(λ)dλ=21∫−112πδ(λ)dλ(δ(λ)=0,λ=0)=π∫−∞∞δ(λ)dλ=π
妙极!
\text{妙极!}
妙极!
7. 留数定理
定理内容:当被积函数
f
(
x
)
是
x
的有理函数(多项式除多项式),且分母的次数比分子
\begin{aligned}\text{定理内容:当被积函数} \,f(x)\, \text{是}\, x \,\text{的有理函数(多项式除多项式),且分母的次数比分子}\end{aligned}
定理内容:当被积函数f(x)是x的有理函数(多项式除多项式),且分母的次数比分子
的次数至少高一次,
f
(
z
)
在实轴上除去有限多个一级奇点
x
1
,
x
2
,
⋯
,
x
p
外处处解析,
\begin{aligned}\text{的次数至少高一次,}f(z)\,\text{在实轴上除去有限多个一级奇点}\,x_1,x_2,\cdots,x_p\, \text{外处处解析,}\end{aligned}
的次数至少高一次,f(z)在实轴上除去有限多个一级奇点x1,x2,⋯,xp外处处解析,
在上半复平面
(
I
m
z
>
0
)
除去有限多个奇点
z
1
,
z
2
,
⋯
,
z
q
外处处解析,则
\begin{aligned}\text{在上半复平面}\,(\mathrm{Im}\,z>0)\,\text{除去有限多个奇点}\,z_1,z_2,\cdots,z_q\,\text{外处处解析,则}\end{aligned}
在上半复平面(Imz>0)除去有限多个奇点z1,z2,⋯,zq外处处解析,则
∫ − ∞ ∞ f ( x ) e i m x d x = π i ∑ k = 1 p R e s [ f ( z ) e i m z , x k ] + 2 π i ∑ k = 1 q R e s [ f ( z ) e i m z , z k ] \int_{-\infin}^{\infin}f(x)e^{imx}dx=\pi i\sum_{k=1}^{p}\mathrm{Res}[f(z)e^{imz},x_k]+2\pi i\sum_{k=1}^{q}\mathrm{Res}[f(z)e^{imz},z_k] ∫−∞∞f(x)eimxdx=πik=1∑pRes[f(z)eimz,xk]+2πik=1∑qRes[f(z)eimz,zk]
其中 R e s [ f ( z ) , z 0 ] 为函数 f 在 z 0 处的留数,定义如下: \begin{aligned}\text{其中}\,\mathrm{Res}[f(z),z_0]\,\text{为函数}\,f\,\text{在}\,z_0\,\text{处的留数,定义如下:}\end{aligned} 其中Res[f(z),z0]为函数f在z0处的留数,定义如下:
若
z
0
是
f
(
z
)
的孤立奇点,
f
(
z
)
在
D
=
{
z
∣
0
<
∣
z
−
z
0
∣
<
R
}
内解析,
C
是
D
内包
\begin{aligned}&\text{若}\,z_0\,\text{是}\,f(z)\,\text{的孤立奇点,}f(z)\,\text{在}\,D=\{z\,|\,0<|z-z_0|<R\}\,\text{内解析,}C\,\text{是}\,D\,\text{内包}\end{aligned}
若z0是f(z)的孤立奇点,f(z)在D={z∣0<∣z−z0∣<R}内解析,C是D内包
围
z
0
的任一正向简单闭曲线,则称积分
\begin{aligned}\text{围}\,z_0\,\text{的任一正向简单闭曲线,则称积分}\end{aligned}
围z0的任一正向简单闭曲线,则称积分
1 2 π i ∮ C f ( z ) d z \frac{1}{2\pi i}\oint_C f(z)dz 2πi1∮Cf(z)dz 为 f 在 z 0 处的留数,记作 R e s [ f ( z ) , z 0 ] . \text{为}\,f\,\text{在}\,z_0\,\text{处的留数,记作}\,\mathrm{Res}[f(z),z_0]. 为f在z0处的留数,记作Res[f(z),z0].
套用定理,令 f ( x ) = 1 x ,实轴上的一级奇点 x 1 = 0 ,上半复平面内无奇点,则 \begin{aligned}\text{套用定理,令}\,f(x)=\frac{1}{x}\text{,实轴上的一级奇点}\,x_1=0\text{,上半复平面内无奇点,则}\end{aligned} 套用定理,令f(x)=x1,实轴上的一级奇点x1=0,上半复平面内无奇点,则
∫ − ∞ ∞ 1 x e i x d x = i π R e s [ e i z z , 0 ] = i π 1 2 π i ∮ ∣ z ∣ = 1 e i z z d z = 1 2 ∮ ∣ z ∣ = 1 e i z z d z \int_{-\infin}^{\infin}\frac{1}{x}e^{ix}dx=i\pi\, \mathrm{Res}[\frac{e^{iz}}{z},0] =i\pi \frac{1}{2\pi i}\oint_{|z|=1} \frac{e^{iz}}{z}dz=\frac{1}{2} \oint_{|z|=1} \frac{e^{iz}}{z}dz ∫−∞∞x1eixdx=iπRes[zeiz,0]=iπ2πi1∮∣z∣=1zeizdz=21∮∣z∣=1zeizdz
∮ ∣ z ∣ = 1 e i z z d z = ∮ ∣ i z ∣ = 1 e i z i z d ( i z ) = ∮ ∣ z ∣ = 1 e z z d z = ∮ ∣ z ∣ = 1 1 z ( 1 + z + z 2 2 ! + ⋯ + z n n ! + ⋯ ) d z = ∮ ∣ z ∣ = 1 ( 1 z + 1 + z 2 ! + ⋯ + z n ( n + 1 ) ! + ⋯ ) d z = ∮ ∣ z ∣ = 1 1 z d z + ∮ ∣ z ∣ = 1 ( d ( z ) + d ( z 2 ) 2 ⋅ 2 ! + ⋯ + d ( z n + 1 ) ( n + 1 ) ( n + 1 ) ! + ⋯ ) = ∮ ∣ z ∣ = 1 1 z d z \begin{aligned}\oint_{|z|=1} \frac{e^{iz}}{z}dz&=\oint_{|iz|=1} \frac{e^{iz}}{iz}d(iz)\\&=\oint_{|z|=1} \frac{e^{z}}{z}dz\\&=\oint_{|z|=1} \frac{1}{z}(1+z+\frac{z^2}{2!}+\cdots+\frac{z^n}{n!}+\cdots) dz \\&=\oint_{|z|=1} (\frac{1}{z}+1+\frac{z}{2!}+\cdots+\frac{z^n}{(n+1)!}+\cdots) dz \\&= \oint_{|z|=1} \frac{1}{z}\,dz\,+\oint_{|z|=1} \big(d(z)+\frac{d(z^2)}{2\cdot2!}+\cdots+\frac{d(z^{n+1})}{(n+1)(n+1)!}+\cdots\big)\\&= \oint_{|z|=1} \frac{1}{z}\,dz\end{aligned} ∮∣z∣=1zeizdz=∮∣iz∣=1izeizd(iz)=∮∣z∣=1zezdz=∮∣z∣=1z1(1+z+2!z2+⋯+n!zn+⋯)dz=∮∣z∣=1(z1+1+2!z+⋯+(n+1)!zn+⋯)dz=∮∣z∣=1z1dz+∮∣z∣=1(d(z)+2⋅2!d(z2)+⋯+(n+1)(n+1)!d(zn+1)+⋯)=∮∣z∣=1z1dz
三角换元,令
z
=
e
i
θ
(
0
≤
θ
≤
2
π
)
,则
d
z
d
θ
=
i
e
i
θ
=
i
z
,
d
z
z
=
i
d
θ
.
\begin{aligned}\text{三角换元,令}\,z=e^{i\theta}(0\leq\theta\leq 2\pi)\,\text{,则}\,\frac{dz}{d\theta}=ie^{i\theta}=iz,\frac{dz}{z}=id\theta\end{aligned}.
三角换元,令z=eiθ(0≤θ≤2π),则dθdz=ieiθ=iz,zdz=idθ.
∮
∣
z
∣
=
1
1
z
d
z
=
∫
0
2
π
i
d
θ
=
2
π
i
\begin{aligned}\oint_{|z|=1} \frac{1}{z}\,dz=\int_0^{2\pi}id\theta=2\pi i\end{aligned}
∮∣z∣=1z1dz=∫02πidθ=2πi
于是 \text{于是} 于是
∫ − ∞ ∞ 1 x e i x d x = 1 2 ∮ ∣ z ∣ = 1 e i z z d z = 1 2 ∮ ∣ z ∣ = 1 1 z d z = π i \begin{aligned}\int_{-\infin}^{\infin}\frac{1}{x}e^{ix}dx=\frac{1}{2} \oint_{|z|=1} \frac{e^{iz}}{z}dz=\frac{1}{2}\oint_{|z|=1} \frac{1}{z}\,dz=\pi i\end{aligned} ∫−∞∞x1eixdx=21∮∣z∣=1zeizdz=21∮∣z∣=1z1dz=πi
又因为 \text{又因为} 又因为
∫ − ∞ ∞ 1 x e i x d x = ∫ − ∞ ∞ 1 x ( cos x + i sin x ) d x = i ∫ − ∞ ∞ sin x x d x \begin{aligned}\int_{-\infin}^{\infin}\frac{1}{x}e^{ix}dx=\int_{-\infin}^{\infin}\frac{1}{x}(\cos x+i\sin x)dx=i\int_{-\infin}^{\infin}\frac{\sin x}{x}dx\end{aligned} ∫−∞∞x1eixdx=∫−∞∞x1(cosx+isinx)dx=i∫−∞∞xsinxdx
所以
∫
−
∞
∞
sin
x
x
d
x
=
π
.
\begin{aligned}\text{所以}\,\int_{-\infin}^{\infin}\frac{\sin x}{x}dx=\pi\end{aligned}.
所以∫−∞∞xsinxdx=π.
8. 黎曼引理
先做些准备工作
\text{先做些准备工作}
先做些准备工作
sin
2
n
+
1
2
x
=
sin
x
2
+
∑
k
=
1
n
(
sin
2
k
+
1
2
x
−
sin
2
k
−
1
2
x
)
\sin \frac{2n+1}{2}x=\sin \frac{x}{2}+\sum_{k=1}^n(\sin \frac{2k+1}{2}x-\sin \frac{2k-1}{2}x)
sin22n+1x=sin2x+k=1∑n(sin22k+1x−sin22k−1x)
由和差化积公式:
sin
A
−
sin
B
=
2
sin
A
−
B
2
cos
A
+
B
2
.
\begin{aligned}\text{由和差化积公式:}\sin A-\sin B=2\sin\frac{A-B}{2}\cos\frac{A+B}{2}\end{aligned}.
由和差化积公式:sinA−sinB=2sin2A−Bcos2A+B.
则
sin
2
n
+
1
2
x
=
(
1
2
+
∑
k
=
1
n
cos
k
x
)
2
sin
x
2
\begin{aligned}\text{则}\,\displaystyle \sin \frac{2n+1}{2}x=\big(\frac{1}{2}+\sum_{k=1}^n \cos kx\big) 2\sin \frac{x}{2}\end{aligned}
则sin22n+1x=(21+k=1∑ncoskx)2sin2x.
x ≠ 2 k π 时,有 sin 2 n + 1 2 x 2 sin x 2 = 1 2 + ∑ k = 1 n cos k x \begin{aligned}x\neq 2k\pi\,\text{时,有}\,\frac{\sin \displaystyle\frac{2n+1}{2}x}{2\sin\displaystyle \frac{x}{2}}=\frac{1}{2}+\sum_{k=1}^n \cos kx \end{aligned} x=2kπ时,有2sin2xsin22n+1x=21+k=1∑ncoskx.
两边同时积分,得 ∫ 0 π sin 2 n + 1 2 x 2 sin x 2 = π 2 ( n = 0 , 1 , 2 , ⋯ ) \begin{aligned}\text{两边同时积分,得}\int_0^{\pi}\frac{\sin\displaystyle \frac{2n+1}{2}x}{2\sin\displaystyle \frac{x}{2}}=\frac{\pi}{2}\,(n=0,1,2,\cdots)\end{aligned} 两边同时积分,得∫0π2sin2xsin22n+1x=2π(n=0,1,2,⋯).
令 g ( x ) = 1 x − 1 2 sin x 2 = 2 sin x 2 − x 2 x sin x 2 , 0 < x ≤ π . \begin{aligned}\text{令}\,\displaystyle g(x)=\frac{1}{x}-\frac{1}{2\sin\displaystyle \frac{x}{2}}=\frac{2\sin\displaystyle \frac{x}{2}-x}{2x\sin \displaystyle \frac{x}{2}},\,0<x\leq\pi\end{aligned}. 令g(x)=x1−2sin2x1=2xsin2x2sin2x−x,0<x≤π.
由洛必达法则, \text{由洛必达法则,} 由洛必达法则,
lim x → 0 + g ( x ) = lim x → 0 + cos x 2 − 1 x cos x 2 + 2 sin x 2 = lim x → 0 + − 1 2 sin x 2 2 cos x 2 − 1 2 x sin x 2 = 0 \lim_{x\to0^+}g(x)=\lim_{x\to0^+}\frac{\cos\displaystyle \frac{x}{2}-1}{x\displaystyle\cos \frac{x}{2}+2\sin \frac{x}{2}}=\lim_{x\to0^+}\frac{-\displaystyle\frac{1}{2}\sin\displaystyle \frac{x}{2}}{2\cos\displaystyle \frac{x}{2}-\frac{1}{2}x\sin \frac{x}{2}}=0 x→0+limg(x)=x→0+limxcos2x+2sin2xcos2x−1=x→0+lim2cos2x−21xsin2x−21sin2x=0
补充定义 g ( 0 ) = 0 ,则 g 在 [ 0 , π ] 上连续 . \text{补充定义}\,g(0)=0\text{,则}\,g\,\text{在}\,[0,\pi]\,\text{上连续}. 补充定义g(0)=0,则g在[0,π]上连续.
Riemann-Lebesgue ( 差 点 儿 漏 掉 s ) 引理: \textrm{Riemann-Lebesgue}\,(差点儿漏掉 \,\textrm{s})\text{引理:} Riemann-Lebesgue(差点儿漏掉s)引理: 若 f 在 [ a , b ] 上连续,则 lim p → ∞ ∫ a b f ( x ) sin p x d x = 0 \text{若}\,f\,\text{在}\,[a,b]\,\text{上连续,则}\displaystyle \lim_{p\to \infin}\int_a^bf(x)\sin px \,dx=0 若f在[a,b]上连续,则p→∞lim∫abf(x)sinpxdx=0.
令
f
(
x
)
=
g
(
x
)
,
p
=
n
+
1
2
,则
\text{令}\,\displaystyle f(x)=g(x),\,p=n+\frac{1}{2}\text{,则}
令f(x)=g(x),p=n+21,则
lim
n
→
∞
∫
0
π
(
1
x
−
1
2
sin
x
2
)
sin
(
n
+
1
2
)
x
d
x
=
0
\lim_{n\to\infin}\int_0^{\pi} \big(\frac{1}{x}-\frac{1}{2\sin \displaystyle \frac{x}{2}}\big)\sin (n+\frac{1}{2})x\,dx=0
n→∞lim∫0π(x1−2sin2x1)sin(n+21)xdx=0
lim
n
→
∞
∫
0
π
sin
(
n
+
1
2
)
x
x
d
x
=
lim
n
→
∞
∫
0
π
sin
(
2
n
+
1
2
)
x
2
sin
x
2
d
x
=
lim
n
→
∞
π
2
=
π
2
\lim_{n\to\infin}\int_0^{\pi} \frac{\sin(\displaystyle n+\frac{1}{2})x}{x}\,dx=\lim_{n\to\infin}\int_0^{\pi} \frac{\sin(\displaystyle \frac{2n+1}{2})x}{2\sin\displaystyle \frac{x}{2}}\,dx=\lim_{n\to\infin} \frac{\pi}{2}=\frac{\pi}{2}
n→∞lim∫0πxsin(n+21)xdx=n→∞lim∫0π2sin2xsin(22n+1)xdx=n→∞lim2π=2π
令
u
=
(
n
+
1
2
)
x
,则
\begin{aligned}\text{令}\,u=(n+\frac{1}{2})x\text{,则}\end{aligned}
令u=(n+21)x,则
lim
n
→
∞
∫
0
π
sin
(
n
+
1
2
)
x
x
d
x
=
lim
n
→
∞
∫
0
(
n
+
1
2
)
π
sin
u
u
d
u
=
π
2
\lim_{n\to\infin}\int_0^{\pi} \frac{\sin(n+\displaystyle\frac{1}{2})x}{x}\,dx=\lim_{n\to\infin}\int_0^{(n+\frac{1}{2})\pi}\frac{\sin u}{u}du =\frac{\pi}{2}
n→∞lim∫0πxsin(n+21)xdx=n→∞lim∫0(n+21)πusinudu=2π
所以 \text{所以} 所以 ∫ 0 ∞ sin u u d u = lim n → ∞ ∫ 0 ( n + 1 2 ) π sin u u d u = π 2 \int_0^{\infin}\frac{\sin u}{u}du=\lim_{n\to\infin}\int_0^{(n+\frac{1}{2})\pi}\frac{\sin u}{u}du =\frac{\pi}{2} ∫0∞usinudu=n→∞lim∫0(n+21)πusinudu=2π
若读者还有其他巧妙解法,请不吝赐教!
\small \text{若读者还有其他巧妙解法,请不吝赐教!}
若读者还有其他巧妙解法,请不吝赐教!
文末彩蛋:大家好,这是我的孪生兄弟: \small \textbf{文末彩蛋:大家好,这是我的孪生兄弟:} 文末彩蛋:大家好,这是我的孪生兄弟: 无穷积分 ∫ e − x 2 d x 的几种巧妙解法! \small \textbf{无穷积分}\,\int e^{-x^2}dx\, \textbf{的几种巧妙解法!} 无穷积分∫e−x2dx的几种巧妙解法!
Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!