一、问题提出
考虑两个齐次线性方程组 A x = 0 , B x = 0 Ax=0,Bx=0 Ax=0,Bx=0,其中 A ∈ R m × n , B ∈ R s × n A\in \mathbb{R}^{m\times n},B\in \mathbb{R}^{s\times n} A∈Rm×n,B∈Rs×n.
设
A
=
(
α
1
T
α
2
T
⋮
α
m
T
)
B
=
(
β
1
T
β
2
T
⋮
β
s
T
)
A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \\ \end{pmatrix} \quad B = \begin{pmatrix} \beta_1^T \\ \beta_2^T \\ \vdots \\ \beta_s^T \\ \end{pmatrix}
A=
α1Tα2T⋮αmT
B=
β1Tβ2T⋮βsT
已知有如下定理成立:
方程组 A x = 0 Ax=0 Ax=0 和 B x = 0 Bx=0 Bx=0 同解的充要条件为两矩阵的行向量组 α 1 , α 2 , ⋯ , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,⋯,αm 与 β 1 , β 2 , ⋯ , β s \beta_1,\beta_2,\cdots,\beta_s β1,β2,⋯,βs 等价,即可以互相线性表出.
二、定理证明
先来证明一下:
充分性:
已知两向量组等价,不妨设
α
i
=
k
i
1
β
1
+
k
i
2
β
2
+
⋯
+
k
i
s
β
s
,
i
=
1
,
2
,
⋯
,
m
\alpha_i = k_{i1}\beta_1+k_{i2}\beta_2+\cdots+k_{is}\beta_s,i=1,2,\cdots,m
αi=ki1β1+ki2β2+⋯+kisβs,i=1,2,⋯,m,则
B
x
=
0
⇒
β
j
T
x
=
0
,
j
=
1
,
2
,
⋯
,
s
⇒
0
=
∑
j
=
1
s
k
i
j
(
β
j
T
x
)
=
(
∑
j
=
1
s
k
i
j
β
j
T
)
x
=
α
i
T
x
,
i
=
1
,
2
,
⋯
,
m
⇒
A
x
=
0
\begin{aligned} &Bx=0 \\ \Rightarrow \,&\beta_j^Tx=0,j=1,2,\cdots,s \\ \Rightarrow\, & 0 = \sum_{j=1}^sk_{ij}(\beta_j^Tx) = \left(\sum_{j=1}^sk_{ij}\beta_j^T\right)x = \alpha_i^Tx,i=1,2,\cdots,m \\ \Rightarrow\, & Ax=0 \end{aligned}
⇒⇒⇒Bx=0βjTx=0,j=1,2,⋯,s0=j=1∑skij(βjTx)=(j=1∑skijβjT)x=αiTx,i=1,2,⋯,mAx=0
即 B x = 0 Bx=0 Bx=0 的解也是 A x = 0 Ax=0 Ax=0 的解, { x ∣ B x = 0 } ⊆ { x ∣ A x = 0 } \{x|Bx=0\}\subseteq\{x|Ax=0\} {x∣Bx=0}⊆{x∣Ax=0}.
同理可证 { x ∣ A x = 0 } ⊆ { x ∣ B x = 0 } \{x|Ax=0\}\subseteq\{x|Bx=0\} {x∣Ax=0}⊆{x∣Bx=0}.
所以 { x ∣ A x = 0 } = { x ∣ B x = 0 } \{x|Ax=0\}=\{x|Bx=0\} {x∣Ax=0}={x∣Bx=0},两方程组同解.
必要性:
已知两方程组同解,则 A x = 0 , B x = 0 , ( A B ) x = 0 Ax=0,Bx=0,\begin{pmatrix}A\\B\end{pmatrix}x=0 Ax=0,Bx=0,(AB)x=0 同解,则 r ≡ r ( A ) = r ( B ) = r ( A B ) r\equiv r(A) = r(B) = r\begin{pmatrix}A\\B\end{pmatrix} r≡r(A)=r(B)=r(AB).
- 若 r = 0 r=0 r=0,则 A , B A,B A,B 均为零矩阵,行向量均为零向量,显然等价.
- 若
r
>
0
r>0
r>0,不妨设
α
1
,
α
2
,
⋯
,
α
r
\alpha_1,\alpha_2,\cdots,\alpha_r
α1,α2,⋯,αr 为
α
1
,
α
2
,
⋯
,
α
m
\alpha_1,\alpha_2,\cdots,\alpha_m
α1,α2,⋯,αm 的极大线性无关组,由
r
=
r
(
A
)
=
r
(
A
B
)
r = r(A) = r\begin{pmatrix}A\\B\end{pmatrix}
r=r(A)=r(AB),则
r
=
r
(
α
1
,
α
2
,
⋯
,
α
m
)
=
r
(
α
1
,
α
2
,
⋯
,
α
m
,
β
1
,
β
2
,
⋯
,
β
s
)
r = r(\alpha_1,\alpha_2,\cdots,\alpha_m) = r(\alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_s)
r=r(α1,α2,⋯,αm)=r(α1,α2,⋯,αm,β1,β2,⋯,βs),则
α
1
,
α
2
,
⋯
,
α
r
\alpha_1,\alpha_2,\cdots,\alpha_r
α1,α2,⋯,αr 也是
α
1
,
α
2
,
⋯
,
α
m
,
β
1
,
β
2
,
⋯
,
β
s
\alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_s
α1,α2,⋯,αm,β1,β2,⋯,βs 的极大线性无关组,所以
β
1
,
β
2
,
⋯
,
β
s
\beta_1,\beta_2,\cdots,\beta_s
β1,β2,⋯,βs 可由
α
1
,
α
2
,
⋯
,
α
r
\alpha_1,\alpha_2,\cdots,\alpha_r
α1,α2,⋯,αr 线性表出,更宽泛一点,也可由
α
1
,
α
2
,
⋯
,
α
m
\alpha_1,\alpha_2,\cdots,\alpha_m
α1,α2,⋯,αm 线性表出.
同理可证 α 1 , α 2 , ⋯ , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,⋯,αm 可由 β 1 , β 2 , ⋯ , β s \beta_1,\beta_2,\cdots,\beta_s β1,β2,⋯,βs 线性表出.
综合上述,若 A x = 0 Ax=0 Ax=0 和 B x = 0 Bx=0 Bx=0 同解,则矩阵 A , B A,B A,B 的行向量组等价.
故事就这样结束了吗? 并没有.
三、深入思考
现在,我们从另一个角度来看这个问题:考虑集合 V = { x ∣ A x = 0 } V=\{x|Ax=0\} V={x∣Ax=0},这显然是方程的解组成的集合. 不难验证,在传统的加法和数乘定义下,该集合是线性空间. 下面,让我们分析下这是个什么样的空间?
利用
A
A
A 的行分块形式,
A
=
(
α
1
T
α
2
T
⋮
α
m
T
)
A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \\ \end{pmatrix}
A=
α1Tα2T⋮αmT
则集合 V V V 可以表示为 V = { x ∣ α i T x = 0 , i = 1 , 2 , ⋯ , m } V = \{x|\alpha_i^Tx=0,i=1,2,\cdots,m\} V={x∣αiTx=0,i=1,2,⋯,m}.
将点乘运算看作内积运算的话,可以这样理解, V V V 是由这样的向量构成,这些向量均与 A A A 的行向量正交.
进一步地,令 V 1 = span { α 1 , α 2 , ⋯ , α m } V_1 = \text{span}\{\alpha_1,\alpha_2,\cdots,\alpha_m\} V1=span{α1,α2,⋯,αm},则 V V V 是由与 V 1 V_1 V1 正交的所有元素构成的集合,即 V 1 V_1 V1 是 V V V 的正交补,即 V 1 ⊥ V V_1 \perp V V1⊥V, V 1 + V = R n V_1+V=\mathbb{R}^n V1+V=Rn. 所以 r ( V 1 ) + r ( V ) = n , r ( V ) = n − r ( V 1 ) = n − r ( A ) r(V_1)+r(V)=n,r(V) = n-r(V_1) = n-r(A) r(V1)+r(V)=n,r(V)=n−r(V1)=n−r(A).
所以线性方程组 A x = 0 Ax=0 Ax=0 的解空间,即为 A A A 行向量组张成空间的正交补.
从这个角度来理解上面的定理会更加直观.
-
若两个矩阵的行向量组等价,则其张成的空间就是相同的空间,由正交补的唯一性,其解空间自然相同.
-
若两个齐次线性方程组同解,则解空间相同,再由正交补的唯一性,可知,两个矩阵行向量组张成的空间为相同的空间,即 span { α 1 , α 2 , ⋯ , α m } = span { β 1 , β 2 , ⋯ , β s } \text{span}\{\alpha_1,\alpha_2,\cdots,\alpha_m\} = \text{span}\{\beta_1,\beta_2,\cdots,\beta_s\} span{α1,α2,⋯,αm}=span{β1,β2,⋯,βs}. 自然地,两个矩阵的行向量组等价.
四、额外补充
看到结论 r ( V ) = n − r ( A ) r(V) = n-r(A) r(V)=n−r(A),又让我想到了一些东西.
- r ( A ) = n ⇒ r ( V ) = 0 ⇒ r(A)=n\,\Rightarrow\,r(V)=0\,\Rightarrow r(A)=n⇒r(V)=0⇒ 解空间为零空间,方程组只存在零解.
- r ( A ) < n ⇒ r ( V ) > 0 ⇒ r(A)<n\,\Rightarrow\, r(V)>0\,\Rightarrow r(A)<n⇒r(V)>0⇒ V V V 中包含非零元素,方程组存在非零解.
- 方程组只有零解,则解空间为零空间 ⇒ r ( V ) = 0 ⇒ r ( A ) = n \Rightarrow\,r(V)=0\,\Rightarrow\,r(A)=n ⇒r(V)=0⇒r(A)=n.
- 方程组存在非零解,则解空间中含有非零元素 ⇒ r ( V ) > 0 ⇒ r ( A ) < n \,\Rightarrow\, r(V)>0\,\Rightarrow\,r(A)<n ⇒r(V)>0⇒r(A)<n.
所以
- A x = 0 Ax=0 Ax=0 只有零解的充要条件为 r ( A ) = n r(A) = n r(A)=n.
- A x = 0 Ax=0 Ax=0 存在非零解的充要条件为 r ( A ) < n r(A)<n r(A)<n.
如果你有什么想法或感悟,欢迎在留言区提出,大家相互交流!