对齐次线性方程组同解充要条件的新理解

本文探讨了齐次线性方程组 Ax=0 和 Bx=0 同解的充要条件,即两矩阵行向量组等价。通过证明和深入分析,揭示了解空间作为行向量组张成空间正交补的性质,从而提供了一个直观的理解。此外,还讨论了方程组解空间的秩与非零解存在的关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、问题提出

考虑两个齐次线性方程组 A x = 0 , B x = 0 Ax=0,Bx=0 Ax=0,Bx=0,其中 A ∈ R m × n , B ∈ R s × n A\in \mathbb{R}^{m\times n},B\in \mathbb{R}^{s\times n} ARm×n,BRs×n.


A = ( α 1 T α 2 T ⋮ α m T ) B = ( β 1 T β 2 T ⋮ β s T ) A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \\ \end{pmatrix} \quad B = \begin{pmatrix} \beta_1^T \\ \beta_2^T \\ \vdots \\ \beta_s^T \\ \end{pmatrix} A= α1Tα2TαmT B= β1Tβ2TβsT

已知有如下定理成立:

方程组 A x = 0 Ax=0 Ax=0 B x = 0 Bx=0 Bx=0 同解的充要条件为两矩阵的行向量组 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm β 1 , β 2 , ⋯   , β s \beta_1,\beta_2,\cdots,\beta_s β1,β2,,βs 等价,即可以互相线性表出.


二、定理证明

先来证明一下:

充分性:

已知两向量组等价,不妨设 α i = k i 1 β 1 + k i 2 β 2 + ⋯ + k i s β s , i = 1 , 2 , ⋯   , m \alpha_i = k_{i1}\beta_1+k_{i2}\beta_2+\cdots+k_{is}\beta_s,i=1,2,\cdots,m αi=ki1β1+ki2β2++kisβs,i=1,2,,m,则
B x = 0 ⇒   β j T x = 0 , j = 1 , 2 , ⋯   , s ⇒   0 = ∑ j = 1 s k i j ( β j T x ) = ( ∑ j = 1 s k i j β j T ) x = α i T x , i = 1 , 2 , ⋯   , m ⇒   A x = 0 \begin{aligned} &Bx=0 \\ \Rightarrow \,&\beta_j^Tx=0,j=1,2,\cdots,s \\ \Rightarrow\, & 0 = \sum_{j=1}^sk_{ij}(\beta_j^Tx) = \left(\sum_{j=1}^sk_{ij}\beta_j^T\right)x = \alpha_i^Tx,i=1,2,\cdots,m \\ \Rightarrow\, & Ax=0 \end{aligned} Bx=0βjTx=0,j=1,2,,s0=j=1skij(βjTx)=(j=1skijβjT)x=αiTx,i=1,2,,mAx=0

B x = 0 Bx=0 Bx=0 的解也是 A x = 0 Ax=0 Ax=0 的解, { x ∣ B x = 0 } ⊆ { x ∣ A x = 0 } \{x|Bx=0\}\subseteq\{x|Ax=0\} {xBx=0}{xAx=0}.

同理可证 { x ∣ A x = 0 } ⊆ { x ∣ B x = 0 } \{x|Ax=0\}\subseteq\{x|Bx=0\} {xAx=0}{xBx=0}.

所以 { x ∣ A x = 0 } = { x ∣ B x = 0 } \{x|Ax=0\}=\{x|Bx=0\} {xAx=0}={xBx=0},两方程组同解.

必要性:

已知两方程组同解,则 A x = 0 , B x = 0 , ( A B ) x = 0 Ax=0,Bx=0,\begin{pmatrix}A\\B\end{pmatrix}x=0 Ax=0,Bx=0,(AB)x=0 同解,则 r ≡ r ( A ) = r ( B ) = r ( A B ) r\equiv r(A) = r(B) = r\begin{pmatrix}A\\B\end{pmatrix} rr(A)=r(B)=r(AB).

  • r = 0 r=0 r=0,则 A , B A,B A,B 均为零矩阵,行向量均为零向量,显然等价.
  • r > 0 r>0 r>0,不妨设 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm 的极大线性无关组,由 r = r ( A ) = r ( A B ) r = r(A) = r\begin{pmatrix}A\\B\end{pmatrix} r=r(A)=r(AB),则 r = r ( α 1 , α 2 , ⋯   , α m ) = r ( α 1 , α 2 , ⋯   , α m , β 1 , β 2 , ⋯   , β s ) r = r(\alpha_1,\alpha_2,\cdots,\alpha_m) = r(\alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_s) r=r(α1,α2,,αm)=r(α1,α2,,αm,β1,β2,,βs),则 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr 也是 α 1 , α 2 , ⋯   , α m , β 1 , β 2 , ⋯   , β s \alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_s α1,α2,,αm,β1,β2,,βs 的极大线性无关组,所以 β 1 , β 2 , ⋯   , β s \beta_1,\beta_2,\cdots,\beta_s β1,β2,,βs 可由 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α1,α2,,αr 线性表出,更宽泛一点,也可由 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm 线性表出.
    同理可证 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m α1,α2,,αm 可由 β 1 , β 2 , ⋯   , β s \beta_1,\beta_2,\cdots,\beta_s β1,β2,,βs 线性表出.

综合上述,若 A x = 0 Ax=0 Ax=0 B x = 0 Bx=0 Bx=0 同解,则矩阵 A , B A,B A,B 的行向量组等价.

故事就这样结束了吗? 并没有.


三、深入思考

现在,我们从另一个角度来看这个问题:考虑集合 V = { x ∣ A x = 0 } V=\{x|Ax=0\} V={xAx=0},这显然是方程的解组成的集合. 不难验证,在传统的加法和数乘定义下,该集合是线性空间. 下面,让我们分析下这是个什么样的空间?

利用 A A A 的行分块形式,
A = ( α 1 T α 2 T ⋮ α m T ) A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \\ \end{pmatrix} A= α1Tα2TαmT

则集合 V V V 可以表示为 V = { x ∣ α i T x = 0 , i = 1 , 2 , ⋯   , m } V = \{x|\alpha_i^Tx=0,i=1,2,\cdots,m\} V={xαiTx=0,i=1,2,,m}.

将点乘运算看作内积运算的话,可以这样理解, V V V 是由这样的向量构成,这些向量均与 A A A 的行向量正交.

进一步地,令 V 1 = span { α 1 , α 2 , ⋯   , α m } V_1 = \text{span}\{\alpha_1,\alpha_2,\cdots,\alpha_m\} V1=span{α1,α2,,αm},则 V V V 是由与 V 1 V_1 V1 正交的所有元素构成的集合,即 V 1 V_1 V1 V V V 的正交补,即 V 1 ⊥ V V_1 \perp V V1V V 1 + V = R n V_1+V=\mathbb{R}^n V1+V=Rn. 所以 r ( V 1 ) + r ( V ) = n , r ( V ) = n − r ( V 1 ) = n − r ( A ) r(V_1)+r(V)=n,r(V) = n-r(V_1) = n-r(A) r(V1)+r(V)=n,r(V)=nr(V1)=nr(A).

所以线性方程组 A x = 0 Ax=0 Ax=0解空间,即为 A A A 行向量组张成空间的正交补.

从这个角度来理解上面的定理会更加直观.

  • 若两个矩阵的行向量组等价,则其张成的空间就是相同的空间,由正交补的唯一性,其解空间自然相同.

  • 若两个齐次线性方程组同解,则解空间相同,再由正交补的唯一性,可知,两个矩阵行向量组张成的空间为相同的空间,即 span { α 1 , α 2 , ⋯   , α m } = span { β 1 , β 2 , ⋯   , β s } \text{span}\{\alpha_1,\alpha_2,\cdots,\alpha_m\} = \text{span}\{\beta_1,\beta_2,\cdots,\beta_s\} span{α1,α2,,αm}=span{β1,β2,,βs}. 自然地,两个矩阵的行向量组等价.

四、额外补充

看到结论 r ( V ) = n − r ( A ) r(V) = n-r(A) r(V)=nr(A),又让我想到了一些东西.

  • r ( A ) = n   ⇒   r ( V ) = 0   ⇒ r(A)=n\,\Rightarrow\,r(V)=0\,\Rightarrow r(A)=nr(V)=0 解空间为零空间,方程组只存在零解.
  • r ( A ) < n   ⇒   r ( V ) > 0   ⇒ r(A)<n\,\Rightarrow\, r(V)>0\,\Rightarrow r(A)<nr(V)>0 V V V 中包含非零元素,方程组存在非零解.
  • 方程组只有零解,则解空间为零空间 ⇒   r ( V ) = 0   ⇒   r ( A ) = n \Rightarrow\,r(V)=0\,\Rightarrow\,r(A)=n r(V)=0r(A)=n.
  • 方程组存在非零解,则解空间中含有非零元素   ⇒   r ( V ) > 0   ⇒   r ( A ) < n \,\Rightarrow\, r(V)>0\,\Rightarrow\,r(A)<n r(V)>0r(A)<n.

所以

  • A x = 0 Ax=0 Ax=0 只有零解的充要条件为 r ( A ) = n r(A) = n r(A)=n.
  • A x = 0 Ax=0 Ax=0 存在非零解的充要条件为 r ( A ) < n r(A)<n r(A)<n.



如果你有什么想法或感悟,欢迎在留言区提出,大家相互交流!

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值