对齐次线性方程组同解充要条件的新理解

30 篇文章 15 订阅

一、问题提出

A = ( α 1 T α 2 T ⋮ α m T ) B = ( β 1 T β 2 T ⋮ β s T ) A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \\ \end{pmatrix} \quad B = \begin{pmatrix} \beta_1^T \\ \beta_2^T \\ \vdots \\ \beta_s^T \\ \end{pmatrix}

二、定理证明

B x = 0 ⇒   β j T x = 0 , j = 1 , 2 , ⋯   , s ⇒   0 = ∑ j = 1 s k i j ( β j T x ) = ( ∑ j = 1 s k i j β j T ) x = α i T x , i = 1 , 2 , ⋯   , m ⇒   A x = 0 \begin{aligned} &Bx=0 \\ \Rightarrow \,&\beta_j^Tx=0,j=1,2,\cdots,s \\ \Rightarrow\, & 0 = \sum_{j=1}^sk_{ij}(\beta_j^Tx) = \left(\sum_{j=1}^sk_{ij}\beta_j^T\right)x = \alpha_i^Tx,i=1,2,\cdots,m \\ \Rightarrow\, & Ax=0 \end{aligned}

B x = 0 Bx=0 的解也是 A x = 0 Ax=0 的解， { x ∣ B x = 0 } ⊆ { x ∣ A x = 0 } \{x|Bx=0\}\subseteq\{x|Ax=0\} .

• r = 0 r=0 ，则 A , B A,B 均为零矩阵，行向量均为零向量，显然等价.
• r > 0 r>0 ，不妨设 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m 的极大线性无关组，由 r = r ( A ) = r ( A B ) r = r(A) = r\begin{pmatrix}A\\B\end{pmatrix} ，则 r = r ( α 1 , α 2 , ⋯   , α m ) = r ( α 1 , α 2 , ⋯   , α m , β 1 , β 2 , ⋯   , β s ) r = r(\alpha_1,\alpha_2,\cdots,\alpha_m) = r(\alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_s) ，则 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r 也是 α 1 , α 2 , ⋯   , α m , β 1 , β 2 , ⋯   , β s \alpha_1,\alpha_2,\cdots,\alpha_m,\beta_1,\beta_2,\cdots,\beta_s 的极大线性无关组，所以 β 1 , β 2 , ⋯   , β s \beta_1,\beta_2,\cdots,\beta_s 可由 α 1 , α 2 , ⋯   , α r \alpha_1,\alpha_2,\cdots,\alpha_r 线性表出，更宽泛一点，也可由 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m 线性表出.
同理可证 α 1 , α 2 , ⋯   , α m \alpha_1,\alpha_2,\cdots,\alpha_m 可由 β 1 , β 2 , ⋯   , β s \beta_1,\beta_2,\cdots,\beta_s 线性表出.

三、深入思考

A = ( α 1 T α 2 T ⋮ α m T ) A = \begin{pmatrix} \alpha_1^T \\ \alpha_2^T \\ \vdots \\ \alpha_m^T \\ \end{pmatrix}

• 若两个矩阵的行向量组等价，则其张成的空间就是相同的空间，由正交补的唯一性，其解空间自然相同.

• 若两个齐次线性方程组同解，则解空间相同，再由正交补的唯一性，可知，两个矩阵行向量组张成的空间为相同的空间，即 span { α 1 , α 2 , ⋯   , α m } = span { β 1 , β 2 , ⋯   , β s } \text{span}\{\alpha_1,\alpha_2,\cdots,\alpha_m\} = \text{span}\{\beta_1,\beta_2,\cdots,\beta_s\} . 自然地，两个矩阵的行向量组等价.

四、额外补充

• r ( A ) = n   ⇒   r ( V ) = 0   ⇒ r(A)=n\,\Rightarrow\,r(V)=0\,\Rightarrow 解空间为零空间，方程组只存在零解.
• r ( A ) < n   ⇒   r ( V ) > 0   ⇒ r(A)<n\,\Rightarrow\, r(V)>0\,\Rightarrow V V 中包含非零元素，方程组存在非零解.
• 方程组只有零解，则解空间为零空间 ⇒   r ( V ) = 0   ⇒   r ( A ) = n \Rightarrow\,r(V)=0\,\Rightarrow\,r(A)=n .
• 方程组存在非零解，则解空间中含有非零元素   ⇒   r ( V ) > 0   ⇒   r ( A ) < n \,\Rightarrow\, r(V)>0\,\Rightarrow\,r(A)<n .

• A x = 0 Ax=0 只有零解的充要条件为 r ( A ) = n r(A) = n .
• A x = 0 Ax=0 存在非零解的充要条件为 r ( A ) < n r(A)<n .

• 17
点赞
• 4
评论
• 44
收藏
• 一键三连
• 扫一扫，分享海报

05-29

03-03 5602
12-04 977
11-11 3167
12-01 169
10-09 3379
07-09 4万+
12-11 1821
09-05 3017
09-29 662
01-09 1032
09-11 2万+
06-22
©️2021 CSDN 皮肤主题: 编程工作室 设计师:CSDN官方博客

1.余额是钱包充值的虚拟货币，按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载，可以购买VIP、C币套餐、付费专栏及课程。