一、推导
假设函数
f
f
f 充分光滑,即
f
f
f 在
x
0
x_0
x0 点处任意阶导数存在,取一小邻域
U
(
x
0
)
\small U(x_0)
U(x0),则
∀
x
∈
U
(
x
0
)
\small \forall\,x\in U(x_0)
∀x∈U(x0),
f
(
x
)
\small f(x)
f(x) 都可以展开为泰勒级数,即
f
(
x
)
=
∑
n
=
0
∞
f
(
n
)
(
x
0
)
n
!
(
x
−
x
0
)
n
=
f
(
x
0
)
+
f
′
(
x
0
)
(
x
−
x
0
)
+
f
′
′
(
x
0
)
2
!
(
x
−
x
0
)
2
+
⋯
f(x)=\sum_{n=0}^{\infin}\frac{f^{(n)}(x_0)}{n!}(x-x_0)^n=f(x_0)+f'(x_0)(x-x_0)+\frac{f''(x_0)}{2!}(x-x_0)^2+\cdots
f(x)=n=0∑∞n!f(n)(x0)(x−x0)n=f(x0)+f′(x0)(x−x0)+2!f′′(x0)(x−x0)2+⋯考虑三角函数
sin
x
,
cos
x
\sin x,\cos x
sinx,cosx 的任意阶导函数,
sin
′
(
x
)
=
cos
(
x
)
=
sin
(
x
+
π
2
)
sin
′
′
(
x
)
=
cos
′
(
x
)
=
sin
′
(
x
+
π
2
)
=
cos
(
x
+
π
2
)
=
sin
(
x
+
π
2
+
π
2
)
=
sin
(
x
+
π
)
\begin{aligned}\sin'(x)&=\cos(x)=\sin (x+\frac{\pi}{2})\\ \sin''(x)&=\cos'(x)=\sin'(x+\frac{\pi}{2})\\&=\cos (x+\frac{\pi}{2})=\sin (x+\frac{\pi}{2}+\frac{\pi}{2})\\&=\sin (x+\pi) \end{aligned}
sin′(x)sin′′(x)=cos(x)=sin(x+2π)=cos′(x)=sin′(x+2π)=cos(x+2π)=sin(x+2π+2π)=sin(x+π)假设
sin
(
n
)
(
x
)
=
sin
(
x
+
n
π
/
2
)
\sin^{(n)}(x)=\sin(x+n\pi/2)
sin(n)(x)=sin(x+nπ/2),下面我们用 数学归纳法 来验证一下.
首先,当 n = 0 n=0 n=0 时, sin ( 0 ) ( x ) = sin ( x ) \sin^{(0)}(x)=\sin(x) sin(0)(x)=sin(x),结论显然成立.
其次,假设当 n = k ( k ≥ 0 ) n=k(k\geq 0) n=k(k≥0) 时结论成立,即 sin ( k ) ( x ) = sin ( x + k π / 2 ) \displaystyle\sin^{(k)}(x)=\sin(x+k\pi/2) sin(k)(x)=sin(x+kπ/2).
考虑
n
=
k
+
1
n=k+1
n=k+1 的情形,此时
sin
(
k
+
1
)
(
x
)
=
d
(
sin
(
k
)
(
x
)
)
d
x
=
d
(
sin
(
x
+
k
π
/
2
)
)
d
x
=
cos
(
x
+
k
π
/
2
)
=
sin
(
x
+
k
π
/
2
+
π
/
2
)
=
sin
(
x
+
(
k
+
1
)
π
/
2
)
\begin{aligned} \sin^{(k+1)}(x)&=\frac{d(\sin^{(k)}(x))}{dx}\\&=\frac{d(\sin(x+k\pi/2))}{dx}\\&=\cos(x+k\pi/2)\\&=\sin(x+k\pi/2+\pi/2)\\&=\sin(x+(k+1)\pi/2) \end{aligned}
sin(k+1)(x)=dxd(sin(k)(x))=dxd(sin(x+kπ/2))=cos(x+kπ/2)=sin(x+kπ/2+π/2)=sin(x+(k+1)π/2) 所以,当
n
=
k
+
1
n=k+1
n=k+1 时,结论照样成立.
由归纳法原理, ∀ n ∈ N , sin ( n ) ( x ) = sin ( x + n π / 2 ) \forall\,n\in N,\,\sin^{(n)}(x)=\sin(x+n\pi/2) ∀n∈N,sin(n)(x)=sin(x+nπ/2).
则 cos ( n ) ( x ) = sin ( n + 1 ) ( x ) = sin ( x + n π / 2 + π / 2 ) = cos ( x + n π / 2 ) \cos^{(n)}(x)=\sin^{(n+1)}(x)=\sin(x+n\pi/2+\pi/2)=\cos(x+n\pi/2) cos(n)(x)=sin(n+1)(x)=sin(x+nπ/2+π/2)=cos(x+nπ/2).
特别地,取 x = 0 x=0 x=0,
sin
(
2
k
)
(
0
)
=
sin
(
k
π
)
=
0
sin
(
2
k
+
1
)
(
0
)
=
sin
(
k
π
+
π
/
2
)
=
(
−
1
)
k
cos
(
2
k
)
(
0
)
=
cos
(
k
π
)
=
(
−
1
)
k
cos
(
2
k
+
1
)
(
0
)
=
cos
(
k
π
+
π
/
2
)
=
0
(
k
=
0
,
1
,
2
,
⋯
)
\begin{aligned} &\sin^{(2k)}(0)=\sin(k\pi)=0 \\ &\sin^{(2k+1)}(0)=\sin(k\pi+\pi/2)=(-1)^{k} \\ \\ &\cos^{(2k)}(0)=\cos(k\pi)=(-1)^{k} \\ &\cos^{(2k+1)}(0)=\cos(k\pi+\pi/2)=0 \\ &(k=0,1,2,\cdots) \end{aligned}
sin(2k)(0)=sin(kπ)=0sin(2k+1)(0)=sin(kπ+π/2)=(−1)kcos(2k)(0)=cos(kπ)=(−1)kcos(2k+1)(0)=cos(kπ+π/2)=0(k=0,1,2,⋯) 取
x
0
=
0
x_0=0
x0=0 的某一小邻域,将
sin
x
,
cos
x
\sin x,\cos x
sinx,cosx 泰勒展开
sin
x
=
∑
n
=
0
∞
sin
(
n
)
(
0
)
n
!
x
n
=
∑
k
=
0
∞
sin
(
2
k
)
(
0
)
(
2
k
)
!
x
2
k
+
∑
k
=
0
∞
sin
(
2
k
+
1
)
(
0
)
(
2
k
+
1
)
!
x
2
k
+
1
=
∑
k
=
0
∞
0
(
2
k
)
!
x
2
k
+
∑
k
=
0
∞
(
−
1
)
k
(
2
k
+
1
)
!
x
2
k
+
1
=
∑
k
=
0
∞
(
−
1
)
k
(
2
k
+
1
)
!
x
2
k
+
1
=
x
−
1
3
!
x
3
+
1
5
!
x
5
−
1
7
!
x
7
+
⋯
cos
x
=
∑
n
=
0
∞
cos
(
n
)
(
0
)
n
!
x
n
=
∑
k
=
0
∞
cos
(
2
k
)
(
0
)
(
2
k
)
!
x
2
k
+
∑
k
=
0
∞
cos
(
2
k
+
1
)
(
0
)
(
2
k
+
1
)
!
x
2
k
+
1
=
∑
k
=
0
∞
(
−
1
)
k
(
2
k
)
!
x
2
k
+
∑
k
=
0
∞
0
(
2
k
+
1
)
!
x
2
k
+
1
=
∑
k
=
0
∞
(
−
1
)
k
(
2
k
)
!
x
2
k
=
1
−
1
2
!
x
2
+
1
4
!
x
4
−
1
6
!
x
6
+
⋯
\begin{aligned} \sin x&=\sum_{n=0}^{\infin}\frac{\sin^{(n)}(0)}{n!}x^n\\ &=\sum_{k=0}^{\infin}\frac{\sin^{(2k)}(0)}{(2k)!}x^{2k}+\sum_{k=0}^{\infin}\frac{\sin^{(2k+1)}(0)}{(2k+1)!}x^{2k+1}\\ &=\sum_{k=0}^{\infin}\frac{0}{(2k)!}x^{2k}+\sum_{k=0}^{\infin}\frac{(-1)^k}{(2k+1)!}x^{2k+1}\\ &=\sum_{k=0}^{\infin}\frac{(-1)^k}{(2k+1)!}x^{2k+1}\\ &=x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots\\ \\ \cos x&=\sum_{n=0}^{\infin}\frac{\cos^{(n)}(0)}{n!}x^n\\ &=\sum_{k=0}^{\infin}\frac{\cos^{(2k)}(0)}{(2k)!}x^{2k}+\sum_{k=0}^{\infin}\frac{\cos^{(2k+1)}(0)}{(2k+1)!}x^{2k+1}\\ &=\sum_{k=0}^{\infin}\frac{(-1)^{k}}{(2k)!}x^{2k}+\sum_{k=0}^{\infin}\frac{0}{(2k+1)!}x^{2k+1}\\ &=\sum_{k=0}^{\infin}\frac{(-1)^{k}}{(2k)!}x^{2k}\\ &=1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+\cdots \end{aligned}
sinxcosx=n=0∑∞n!sin(n)(0)xn=k=0∑∞(2k)!sin(2k)(0)x2k+k=0∑∞(2k+1)!sin(2k+1)(0)x2k+1=k=0∑∞(2k)!0x2k+k=0∑∞(2k+1)!(−1)kx2k+1=k=0∑∞(2k+1)!(−1)kx2k+1=x−3!1x3+5!1x5−7!1x7+⋯=n=0∑∞n!cos(n)(0)xn=k=0∑∞(2k)!cos(2k)(0)x2k+k=0∑∞(2k+1)!cos(2k+1)(0)x2k+1=k=0∑∞(2k)!(−1)kx2k+k=0∑∞(2k+1)!0x2k+1=k=0∑∞(2k)!(−1)kx2k=1−2!1x2+4!1x4−6!1x6+⋯则
sin
x
=
∑
k
=
0
∞
(
−
1
)
k
(
2
k
+
1
)
!
x
2
k
+
1
=
x
−
1
3
!
x
3
+
1
5
!
x
5
−
1
7
!
x
7
+
⋯
cos
x
=
∑
k
=
0
∞
(
−
1
)
k
(
2
k
)
!
x
2
k
=
1
−
1
2
!
x
2
+
1
4
!
x
4
−
1
6
!
x
6
+
⋯
\begin{aligned} &\sin x=\sum_{k=0}^{\infin}\frac{(-1)^k}{(2k+1)!}x^{2k+1} =x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots \\ &\cos x=\sum_{k=0}^{\infin}\frac{(-1)^{k}}{(2k)!}x^{2k} =1-\frac{1}{2!}x^2+\frac{1}{4!}x^4-\frac{1}{6!}x^6+\cdots \end{aligned}
sinx=k=0∑∞(2k+1)!(−1)kx2k+1=x−3!1x3+5!1x5−7!1x7+⋯cosx=k=0∑∞(2k)!(−1)kx2k=1−2!1x2+4!1x4−6!1x6+⋯下面打算用这两个式子证些好玩儿的东西.
二、两个妙用
1. 欧拉公式
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta}=\cos\theta+i\sin\theta
eiθ=cosθ+isinθ 首先将
e
x
e^x
ex 在
x
0
=
0
x_0=0
x0=0 处进行泰勒展开,已知
(
e
x
)
′
=
e
x
(e^x)'=e^x
(ex)′=ex,则
(
e
x
)
(
n
)
∣
x
=
0
=
e
x
∣
x
=
0
=
1
(e^x)^{(n)}|_{x=0}=e^x|_{x=0}=1
(ex)(n)∣x=0=ex∣x=0=1,所以
e
x
=
∑
n
=
0
∞
(
e
x
)
(
n
)
∣
x
=
0
n
!
x
n
=
∑
n
=
0
∞
1
n
!
x
n
=
1
+
x
+
1
2
!
x
2
+
1
3
!
x
3
+
⋯
e^x=\sum_{n=0}^{\infin}\frac{(e^x)^{(n)}|_{x=0}}{n!}x^n=\sum_{n=0}^{\infin}\frac{1}{n!}x^n=1+x+\frac{1}{2!}x^2+\frac{1}{3!}x^3+\cdots
ex=n=0∑∞n!(ex)(n)∣x=0xn=n=0∑∞n!1xn=1+x+2!1x2+3!1x3+⋯将
x
x
x 用
i
θ
i\theta
iθ 代替,得
e
i
θ
=
1
+
i
θ
−
1
2
!
θ
2
−
i
3
!
θ
3
+
1
4
!
θ
4
+
i
5
!
θ
5
−
1
6
!
θ
6
−
i
7
!
θ
7
+
⋯
=
(
1
−
1
2
!
θ
2
+
1
4
!
θ
4
−
1
6
θ
6
+
⋯
)
+
i
(
θ
−
1
3
!
θ
3
+
1
5
!
θ
5
−
1
7
!
θ
7
+
⋯
)
\begin{aligned} e^{i\theta}&=1+i\theta-\frac{1}{2!}\theta^2-\frac{i}{3!}\theta^3+\frac{1}{4!}\theta^4+\frac{i}{5!}\theta^5-\frac{1}{6!}\theta^6-\frac{i}{7!}\theta^7+\cdots\\ &=(1-\frac{1}{2!}\theta^2+\frac{1}{4!}\theta^4-\frac{1}{6}\theta^6+\cdots)+i(\theta-\frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5-\frac{1}{7!}\theta^7+\cdots) \end{aligned}
eiθ=1+iθ−2!1θ2−3!iθ3+4!1θ4+5!iθ5−6!1θ6−7!iθ7+⋯=(1−2!1θ2+4!1θ4−61θ6+⋯)+i(θ−3!1θ3+5!1θ5−7!1θ7+⋯)将
1
−
1
2
!
θ
2
+
1
4
!
θ
4
−
1
6
θ
6
+
⋯
=
cos
θ
θ
−
1
3
!
θ
3
+
1
5
!
θ
5
−
1
7
!
θ
7
+
⋯
=
sin
θ
\begin{aligned} 1-\frac{1}{2!}\theta^2+\frac{1}{4!}\theta^4-\frac{1}{6}\theta^6+\cdots=\cos\theta\\ \theta-\frac{1}{3!}\theta^3+\frac{1}{5!}\theta^5-\frac{1}{7!}\theta^7+\cdots=\sin\theta \end{aligned}
1−2!1θ2+4!1θ4−61θ6+⋯=cosθθ−3!1θ3+5!1θ5−7!1θ7+⋯=sinθ代入,得
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta}=\cos\theta+i\sin\theta
eiθ=cosθ+isinθ特别地,考虑
θ
=
π
\theta=\pi
θ=π 时,
e
i
π
+
1
=
0
e^{i\pi}+1=0
eiπ+1=0这是一个奇妙的公式,同时包含了数学中的 5 个重要的常数:
e
,
i
,
π
,
1
,
0
e,i,\pi,1,0
e,i,π,1,0.
另外, e i θ e^{i\theta} eiθ 的模长为1,常用于积分换元. 证明一下:
- e i θ ‾ = e i θ ‾ = e − i θ \overline {e^{i\theta}}=e^{\overline{i\theta}}=e^{-i\theta} eiθ=eiθ=e−iθ ∴ ∣ e i θ ∣ 2 = e i θ ⋅ e i θ ‾ = e i θ − i θ = e 0 = 1 \therefore\,\, |e^{i\theta}|^2=e^{i\theta}\cdot\overline {e^{i\theta}}=e^{i\theta-i\theta}=e^0=1 ∴∣eiθ∣2=eiθ⋅eiθ=eiθ−iθ=e0=1
-
e
i
θ
=
cos
θ
+
i
sin
θ
e^{i\theta}=\cos\theta+i\sin\theta
eiθ=cosθ+isinθ
∴
∣
e
i
θ
∣
2
=
cos
θ
cos
θ
+
sin
θ
sin
θ
=
cos
(
θ
−
θ
)
=
cos
0
=
1
\therefore\,\, |e^{i\theta}|^2=\cos\theta\cos\theta+\sin\theta\sin\theta=\cos(\theta-\theta)=\cos 0 =1
∴∣eiθ∣2=cosθcosθ+sinθsinθ=cos(θ−θ)=cos0=1
2. 自然数倒数平方和
∑ n = 1 ∞ 1 n 2 = 1 + 1 2 2 + 1 3 2 + 1 4 2 + ⋯ = π 2 6 \sum_{n=1}^{\infin}\frac{1}{n^2}=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots=\frac{\pi^2}{6} n=1∑∞n21=1+221+321+421+⋯=6π2 虽然不叫欧拉公式,但这种解法同样是欧拉给出来的,下面让我们欣赏下欧拉的伟大思路.
考虑函数
f
(
x
)
=
sin
x
x
(
x
≠
0
)
,
lim
x
→
0
f
(
x
)
=
1
f(x)=\frac{\sin x}{x}(x\neq 0),\,\,\lim_{x\to 0}f(x)=1
f(x)=xsinx(x=0),x→0limf(x)=1补充定义
f
(
0
)
=
1
f(0)=1
f(0)=1.
因为 f ( x ) = sin x / x f(x)=\sin x/x f(x)=sinx/x,所以其零点为 k π , k = ± 1 , ± 2 , ± 3 , ⋯ k\pi,k=\pm1,\pm2,\pm3,\cdots kπ,k=±1,±2,±3,⋯
将
f
(
x
)
f(x)
f(x) 看作一个多项式,可以通过零点表示,即
f
(
x
)
=
c
1
(
x
−
π
)
(
x
+
π
)
(
x
−
2
π
)
(
x
+
2
π
)
(
x
−
3
π
)
(
x
+
3
π
)
⋯
=
c
1
(
x
2
−
π
2
)
(
x
2
−
4
π
2
)
(
x
2
−
9
π
2
)
⋯
\begin{aligned} f(x)&=c_1(x-\pi)(x+\pi)(x-2\pi)(x+2\pi)(x-3\pi)(x+3\pi)\cdots\\ &=c_1(x^2-\pi^2)(x^2-4\pi^2)(x^2-9\pi^2)\cdots \end{aligned}
f(x)=c1(x−π)(x+π)(x−2π)(x+2π)(x−3π)(x+3π)⋯=c1(x2−π2)(x2−4π2)(x2−9π2)⋯将
sin
x
=
∑
k
=
0
∞
(
−
1
)
k
(
2
k
+
1
)
!
x
2
k
+
1
=
x
−
1
3
!
x
3
+
1
5
!
x
5
−
1
7
!
x
7
+
⋯
\sin x=\sum_{k=0}^{\infin}\frac{(-1)^k}{(2k+1)!}x^{2k+1} =x-\frac{1}{3!}x^3+\frac{1}{5!}x^5-\frac{1}{7!}x^7+\cdots
sinx=k=0∑∞(2k+1)!(−1)kx2k+1=x−3!1x3+5!1x5−7!1x7+⋯代入
f
(
x
)
=
sin
x
/
x
f(x)=\sin x/x
f(x)=sinx/x,得
f
(
x
)
=
1
−
1
3
!
x
2
+
1
5
!
x
4
−
1
7
!
x
6
+
⋯
f(x)=1-\frac{1}{3!}x^2+\frac{1}{5!}x^4-\frac{1}{7!}x^6+\cdots
f(x)=1−3!1x2+5!1x4−7!1x6+⋯将这两个式子放在一起
1
−
1
3
!
x
2
+
1
5
!
x
4
−
1
7
!
x
6
+
⋯
=
c
1
(
x
2
−
π
2
)
(
x
2
−
4
π
2
)
(
x
2
−
9
π
2
)
⋯
1-\frac{1}{3!}x^2+\frac{1}{5!}x^4-\frac{1}{7!}x^6+\cdots=c_1(x^2-\pi^2)(x^2-4\pi^2)(x^2-9\pi^2)\cdots
1−3!1x2+5!1x4−7!1x6+⋯=c1(x2−π2)(x2−4π2)(x2−9π2)⋯由两端常数项相等,得
1
=
c
1
(
−
π
2
)
(
−
4
π
2
)
(
−
9
π
2
)
⋯
c
1
=
1
(
−
π
2
)
(
−
4
π
2
)
(
−
9
π
2
)
⋯
1=c_1(-\pi^2)(-4\pi^2)(-9\pi^2)\cdots\\ c_1=\frac{1}{(-\pi^2)(-4\pi^2)(-9\pi^2)\cdots}
1=c1(−π2)(−4π2)(−9π2)⋯c1=(−π2)(−4π2)(−9π2)⋯1代入原式,得
1
−
1
3
!
x
2
+
1
5
!
x
4
−
1
7
!
x
6
+
⋯
=
(
1
−
x
2
π
2
)
(
1
−
x
2
4
π
2
)
(
1
−
x
2
9
π
2
)
⋯
1-\frac{1}{3!}x^2+\frac{1}{5!}x^4-\frac{1}{7!}x^6+\cdots=(1-\frac{x^2}{\pi^2})(1-\frac{x^2}{4\pi^2})(1-\frac{x^2}{9\pi^2})\cdots
1−3!1x2+5!1x4−7!1x6+⋯=(1−π2x2)(1−4π2x2)(1−9π2x2)⋯
考虑两端
x
2
x^2
x2 的系数,有人可能会问右端
x
2
x^2
x2 的系数是怎么求出来的?没错,我也想问.
我的理解是这样的:利用组合的思想,右端的 x 2 x^2 x2 项只能这样得出:第 k k k 个括号里的 − x 2 k 2 π 2 \displaystyle-\frac{x^2}{k^2\pi^2} −k2π2x2 与其他括号中的 1 1 1 相乘,然后将这无穷多项相加.
所以右端
x
2
x^2
x2 的系数为
−
1
π
2
−
1
4
π
2
−
1
9
π
2
−
⋯
=
−
1
π
2
∑
n
=
1
∞
1
n
2
-\frac{1}{\pi^2}-\frac{1}{4\pi^2}-\frac{1}{9\pi^2}-\cdots=-\frac{1}{\pi^2}\sum_{n=1}^{\infin}\frac{1}{n^2}
−π21−4π21−9π21−⋯=−π21n=1∑∞n21而左端
x
2
x^2
x2 的系数为
−
1
3
!
\displaystyle -\frac{1}{3!}
−3!1,所以
−
1
3
!
=
−
1
π
2
∑
n
=
1
∞
1
n
2
π
2
6
=
∑
n
=
1
∞
1
n
2
=
1
+
1
2
2
+
1
3
2
+
1
4
2
+
⋯
\begin{aligned} -\frac{1}{3!}&=-\frac{1}{\pi^2}\sum_{n=1}^{\infin}\frac{1}{n^2}\\ \frac{\pi^2}{6}&=\sum_{n=1}^{\infin}\frac{1}{n^2}=1+\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+\cdots \end{aligned}
−3!16π2=−π21n=1∑∞n21=n=1∑∞n21=1+221+321+421+⋯Okay, 证明完毕 !
如有纰漏,还请指正!