目录
一、一般形式
先来说下什么是内积,这里仅考虑实线性空间上的内积,设 V \small V V 是实线性空间,在其上定义内积运算 ( ⋅ , ⋅ ) : V × V → R \small (\,\cdot\,,\cdot\,): V \times V \to R (⋅,⋅):V×V→R,即 ∀ x , y ∈ V , ∃ \small \forall \;x,y \in V,\; \exists ∀x,y∈V,∃ 唯一的元素 ( x , y ) ∈ R \small (x,y) \in R (x,y)∈R 与之对应,称为 x x x 与 y y y 的内积,且满足以下性质:
( x , x ) ≥ 0 且 ( x , x ) = 0 ⇔ x = 0 (x,x)\geq0 \,\,且\,\, (x,x)=0 \Leftrightarrow x=0 (x,x)≥0且(x,x)=0⇔x=0 |
---|
( x , y ) = ( y , x ) (x,y)=(y,x) (x,y)=(y,x) |
( a x , z ) = a ( x , z ) , a ∈ R (ax,z)=a(x,z),\,a \in R (ax,z)=a(x,z),a∈R |
( x + y , z ) = ( x , z ) + ( y , z ) (x+y,z)=(x,z)+(y,z) (x+y,z)=(x,z)+(y,z) |
柯西-施瓦兹不等式:
(
a
,
b
)
2
≤
(
a
,
a
)
(
b
,
b
)
(a,b) ^2\leq(a,a)(b,b)
(a,b)2≤(a,a)(b,b)上面就是大名鼎鼎的柯西施瓦兹不等式了,但看不出来它在说什么.
二、解释
首先,可以根据内积定义向量的长度:
∥
x
∥
=
(
x
,
x
)
\Vert x\Vert=\sqrt{(x,x)}
∥x∥=(x,x).
对不等式两边开根号,得
∣
(
a
,
b
)
∣
≤
∥
a
∥
∥
b
∥
\vert(a,b)\vert\leq \Vert a\Vert\Vert b\Vert
∣(a,b)∣≤∥a∥∥b∥ (好吧,还是看不出来它在说什么)
不妨设
b
≠
0
b\neq0
b=0,
b
=
0
b=0
b=0 时不等式显然成立.
∵
b
≠
0
,
∴
∥
b
∥
≠
0
\because b\neq0,\therefore \Vert b\Vert\neq0
∵b=0,∴∥b∥=0,不等式两边同时除以
∥
b
∥
\Vert b\Vert
∥b∥,得
∣
(
a
,
b
)
∣
∥
b
∥
≤
∥
a
∥
\frac{\vert(a,b)\vert}{\Vert b\Vert}\leq \Vert a\Vert
∥b∥∣(a,b)∣≤∥a∥ 这时应该能看出来一些东西了,好像是在比较两个向量的长度. 但左侧是哪个向量的长度呢?下面来回答这个问题.
因为
b
≠
0
b\neq0
b=0,所以可以将其扩充为空间中的一组正交基,然后对向量
a
a
a 进行正交分解,如图所示.

则
a
a
a 可以表示为
a
=
k
b
+
u
a=kb+u
a=kb+u其中
u
u
u 与
b
b
b 垂直,即
(
u
,
b
)
=
0
(u,b)=0
(u,b)=0.
两边同时与
b
b
b 作内积,得
(
a
,
b
)
=
k
(
b
,
b
)
+
0
(a,b)=k(b,b)+0
(a,b)=k(b,b)+0则
a
=
(
a
,
b
)
(
b
,
b
)
b
+
u
a=\frac{(a,b)}{(b,b)}b+u
a=(b,b)(a,b)b+u令
v
=
(
a
,
b
)
(
b
,
b
)
b
v=\frac{(a,b)}{(b,b)}b
v=(b,b)(a,b)b则
v
v
v 的长度
∥
v
∥
=
∣
(
a
,
b
)
∣
∥
b
∥
\Vert v\Vert=\frac{\vert(a,b)\vert}{\Vert b \Vert}
∥v∥=∥b∥∣(a,b)∣ 所以,不等式可以这么理解:向量
a
a
a 在向量
b
b
b 方向上投影的长度小于等于向量
a
a
a 自身的长度.
三、证明
证法1:
∥ a ∥ 2 = ( a , a ) = ( k b + u , k b + u ) = ( k b , k b ) + 2 k ( b , u ) + ( u , u ) = ( k b , k b ) + ( u , u ) = ( v , v ) + ( u , u ) = ∥ v ∥ 2 + ∥ u ∥ 2 ≥ ∥ v ∥ 2 ∴ ∥ a ∥ 2 ≥ ∥ v ∥ 2 , ∥ a ∥ ≥ ∥ v ∥ ∴ ∥ a ∥ ≥ ∣ ( a , b ) ∣ ∥ b ∥ \begin{aligned}\Vert a\Vert^2&=(a,a)\\&=(kb+u,kb+u)\\&=(kb,kb)+2k(b,u)+(u,u)\\&=(kb,kb)+(u,u)\\&=(v,v)+(u,u)\\&=\Vert v\Vert^2+\Vert u\Vert^2 \\& \geq \Vert v\Vert^2 \\ \therefore \Vert a\Vert^2 & \geq \Vert v\Vert^2,\Vert a\Vert \geq \Vert v\Vert\\\therefore \Vert a\Vert &\geq \frac{\vert(a,b)\vert}{\Vert b\Vert} \end{aligned} ∥a∥2∴∥a∥2∴∥a∥=(a,a)=(kb+u,kb+u)=(kb,kb)+2k(b,u)+(u,u)=(kb,kb)+(u,u)=(v,v)+(u,u)=∥v∥2+∥u∥2≥∥v∥2≥∥v∥2,∥a∥≥∥v∥≥∥b∥∣(a,b)∣不等式成立.
证法2:
若
a
=
0
a=0
a=0,不等式显然成立;
否则,考虑
(
t
a
+
b
,
t
a
+
b
)
=
(
a
,
a
)
t
2
+
2
(
a
,
b
)
t
+
(
b
,
b
)
≥
0
(ta+b,ta+b) = (a,a)t^2+2(a,b)t+(b,b)\geq0
(ta+b,ta+b)=(a,a)t2+2(a,b)t+(b,b)≥0将其看作是关于
t
t
t 的二次函数,则有
Δ
=
4
(
a
,
b
)
2
−
4
(
a
,
a
)
(
b
,
b
)
≤
0
\Delta=4(a,b)^2-4(a,a)(b,b)\leq0
Δ=4(a,b)2−4(a,a)(b,b)≤0所以
(
a
,
b
)
2
≤
(
a
,
a
)
(
b
,
b
)
(a,b)^2\leq(a,a)(b,b)
(a,b)2≤(a,a)(b,b),当且仅当
t
a
+
b
=
0
ta+b=0
ta+b=0 时,“
=
=
=” 成立.
四、特殊形式
1. R n \small R^n Rn 中
设 a = ( a 1 , a 2 , ⋯ , a n ) , b = ( b 1 , b 2 , ⋯ , b n ) , a , b ∈ R n a=(a_1,a_2,\cdots,a_n),b=(b_1,b_2,\cdots,b_n),a,b \in R^n a=(a1,a2,⋯,an),b=(b1,b2,⋯,bn),a,b∈Rn,则 ( a , b ) 2 = ( ∑ i = 1 n a i b i ) 2 ≤ ( ∑ i = 1 n a i 2 ) ( ∑ i = 1 n b i 2 ) = ( a , a ) ( b , b ) (a,b)^2=(\sum_{i=1}^{n}a_ib_i)^2\leq(\sum_{i=1}^{n}a_i^2)(\sum_{i=1}^{n}b_i^2)=(a,a)(b,b) (a,b)2=(i=1∑naibi)2≤(i=1∑nai2)(i=1∑nbi2)=(a,a)(b,b)当且仅当 a = λ b a=\lambda b a=λb 时,“ = = =” 成立.
2. l 2 \small l^2 l2 中
设
a
=
(
a
1
,
a
2
,
⋯
)
,
b
=
(
b
1
,
b
2
,
⋯
)
,
a
,
b
∈
l
2
a=(a_1,a_2,\cdots),b=(b_1,b_2,\cdots),\,a,b \in l^2
a=(a1,a2,⋯),b=(b1,b2,⋯),a,b∈l2,即
(
∑
i
=
1
∞
∣
a
i
∣
2
)
1
2
<
∞
,
(
∑
i
=
1
∞
∣
b
i
∣
2
)
1
2
<
∞
(\sum_{i=1}^{\infin} \vert a_i\vert^2)^{\frac{1}{2}}<\infin,\,\,(\sum_{i=1}^{\infin} \vert b_i\vert^2)^{\frac{1}{2}}<\infin
(i=1∑∞∣ai∣2)21<∞,(i=1∑∞∣bi∣2)21<∞则
(
a
,
b
)
2
=
(
∑
i
=
1
∞
a
i
b
i
)
2
≤
(
∑
i
=
1
∞
a
i
2
)
(
∑
i
=
1
∞
b
i
2
)
=
(
a
,
a
)
(
b
,
b
)
(a,b)^2=(\sum_{i=1}^{\infin}a_ib_i)^2\leq(\sum_{i=1}^{\infin}a_i^2)(\sum_{i=1}^{\infin}b_i^2)=(a,a)(b,b)
(a,b)2=(i=1∑∞aibi)2≤(i=1∑∞ai2)(i=1∑∞bi2)=(a,a)(b,b)当且仅当
a
=
λ
b
a=\lambda b
a=λb 时,“
=
=
=” 成立.
3. L 2 [ a , b ] \small L^2[a,b] L2[a,b] 中
设
f
,
g
∈
L
2
[
a
,
b
]
f,g \in L^2[a,b]
f,g∈L2[a,b],即
∫
[
a
,
b
]
f
2
(
x
)
d
x
<
∞
,
∫
[
a
,
b
]
g
2
(
x
)
d
x
<
∞
\int_{[a,b]}f^2(x)dx < \infin,\,\,\int_{[a,b]}g^2(x)dx < \infin
∫[a,b]f2(x)dx<∞,∫[a,b]g2(x)dx<∞则
(
f
,
g
)
2
=
(
∫
[
a
,
b
]
f
(
x
)
g
(
x
)
d
x
)
2
≤
(
∫
[
a
,
b
]
f
2
(
x
)
d
x
)
(
∫
[
a
,
b
]
g
2
(
x
)
d
x
)
=
(
f
,
f
)
(
g
,
g
)
(f,g)^2=(\int_{[a,b]}f(x)g(x)dx)^2\leq(\int_{[a,b]}f^2(x)dx)(\int_{[a,b]}g^2(x)dx)=(f,f)(g,g)
(f,g)2=(∫[a,b]f(x)g(x)dx)2≤(∫[a,b]f2(x)dx)(∫[a,b]g2(x)dx)=(f,f)(g,g)当且仅当
t
f
(
x
)
+
g
(
x
)
≡
0
tf(x)+g(x)\equiv0
tf(x)+g(x)≡0 时,“
=
=
=” 成立.
4. 概率空间中
设
ξ
1
,
ξ
2
\xi_1,\xi_2
ξ1,ξ2 为两个随机变量,则
(
E
(
ξ
1
ξ
2
)
)
2
≤
E
(
ξ
1
2
)
E
(
ξ
2
2
)
(E(\xi_1\xi_2))^2\leq E(\xi_1^2)E(\xi_2^2)
(E(ξ1ξ2))2≤E(ξ12)E(ξ22)当且仅当
P
{
t
ξ
1
+
ξ
2
=
0
}
=
1
P\lbrace t\xi_1+\xi_2=0\rbrace=1
P{tξ1+ξ2=0}=1 时,“
=
=
=” 成立.
Plus: 如有错误、可以改进的地方、或任何想说的,请在评论区留言!