卷积神经网络结构可视化工具PlotNeuralNet

卷积神经网络结构可视化

简介

本文介绍的工具是针对卷积神经网络示意图可视化的,不包括算图。(示意图一般出现在论文中)常见的卷积神经网络示意图绘制工具不少,常用的主要有NN SVG、ConvNetDraw、PlotNeuralNet等。写这篇重点介绍PlotNeuralNet的教程的原因是国内关于它的教程很少并且大都只是列举了官方demo。个人觉得PlotNeuralNet是很好看、可定制程度高的卷积神经网络可视化工具。

常见工具

NN SVG

这是我过去一段时间内比较喜欢用的,特点是很方便,提供给用户的是个交互式的Web页面。可以访问 官方地址使用该工具,网站首页截图如下。

该工具的主要特点如下。

  • 方便,各层直接界面控制增减及变化。
  • 支持三种风格,选择空间大。
  • 支持SVG格式下载。

缺点如下

  • 可视化界面的最大问题就是很多用户期待的功能为考虑全面,定制程度低。
  • 各层连接不是很美观。

ConvNetDraw

我从未使用过,很多博主推荐,但是观感劝退了我。其官方地址可以访问使用,首页截图如下。

特点如下。

  • 脚本化控制
  • 尺度自定义
  • 直观

缺点如下。

  • 既没有做到脚本化的自由度,又没有做到交互界面的观感。
  • 不好看。

PlotNeuralNet

可以访问其Github官方地址下载该工具。

下面呈现的是前馈网络的示意图。FCN-8效果图

这是我极力推荐的工具,尽管它的上手难度略高于之前两个,但学会之后很好用,不少论文就是使用这个工具可视化的。

其主要特点如下。

  • 脚本化,使用LaTex编写或者使用Python脚本编写结构模型,自由度高。

相关缺点如下。

  • 无交互界面,上手略有难度。

使用教程

说明

基于Linux或者有bash的环境,我只在Ubuntu系统下测试成功。(事实上,深度学习首选的环境之一就是Ubuntu。)这里只介绍Python脚本绘制的方式,不介绍LaTex方式。需要安装前置软件,如LaTex解析器(推荐安装texlive。)。

前置准备

安装textlive

调用LaTex解析生成PDF,需要安装LaTex,这里使用TextLive。可以使用清华的镜像源下载,Linux环境下执行下面的命令即可。该命令为下载镜像到当前目录,失败则可能换源,去掉上述链接的最后文件,在浏览器中查看合适文件下载即可。
wget https://mirrors.tuna.tsinghua.edu.cn/CTAN/systems/texlive/Images/texlive2019.iso

其他相关软件包安装

  • sudo apt-get install perl-tk
    • 安装图形界面
  • sudo mount -o loop texlive.iso /mnt
    • 挂载镜像
  • cd /mnt
    • 切换到挂载目录
  • sudo ./install-tl -gui
    • 使用图形界面安装
  • sudo apt-get install texlive-latex-extra
    • 安装扩展包

下载源码

使用Git将源码仓库clone到本地,命令如下。

git clone https://github.com/HarisIqbal88/PlotNeuralNet.git

源码目录结构

其中pycore下的tikzeng.py是核心文件,定义了绘图过程(所有to开头的函数),可以绘制的层,py脚本向LaTex的转换。代码比较易懂,这里不做解析了。

绘制图形

一般将自己写的py脚本放在clone的项目的pyexamples目录下。源目录下有两个py脚本,对其进行详细注释,包含了常用的语法。

代码1-test_simple.py

通过cd到pyexamples目录执行bash ../tikzmake.sh test_simple注意不加py后缀,且有些错误或者警告正常,观察是否生成pdf文件即可。)具体代码如下。

import sys
sys.path.append('../')  # 添加自定义库的目录
from pycore.tikzeng import *  #  导入自定义库

# defined your arch
arch = [
    # 添加头
    to_head( '..' ),
    to_cor(),
    to_begin(),
    # 添加卷积层conv1
    to_Conv("conv1", 512, 64, offset="(0,0,0)", to="(0,0,0)", height=64, depth=64, width=2 ),
    # 卷积层conv1东侧添加池化层pool1
    to_Pool("pool1", offset="(0,0,0)", to="(conv1-east)"),
    # 池化层pool1东侧添加卷积层conv2
    to_Conv("conv2", 128, 64, offset="(1,0,0)", to="(pool1-east)", height=32, depth=32, width=2 ),
    # 建立pool1到conv2的连接箭头
    to_connection( "pool1", "conv2"), 
    # conv2东侧添加pool2
    to_Pool("pool2", offset="(0,0,0)", to="(conv2-east)", height=28, depth=28, width=1),
    # pool1东侧添加softmax层但是偏移3单位
    to_SoftMax("soft1", 10 ,"(3,0,0)", "(pool1-east)", caption="SOFT"  ),
    # 建立pool2到soft1的连接箭头
    to_connection("pool2", "soft1"),    
    # 结束
    to_end()
    ]


def main():
    namefile = str(sys.argv[0]).split('.')[0]
    to_generate(arch, namefile + '.tex' )


if __name__ == '__main__':
    main()

生成的PDF如下。

代码2-unet.py

具体代码如下。

import sys
sys.path.append('../')
from pycore.tikzeng import *
from pycore.blocks  import *

arch = [ 
    # 开头
    to_head('..'), 
    to_cor(),
    to_begin(),
    
    # 添加输入层
    to_input( '../examples/fcn8s/cats.jpg' ),

    #  添加block1包含一个二重卷积接relu
    to_ConvConvRelu( name='ccr_b1', s_filer=500, n_filer=(64,64), offset="(0,0,0)", to="(0,0,0)", width=(2,2), height=40, depth=40  ),
    to_Pool(name="pool_b1", offset="(0,0,0)", to="(ccr_b1-east)", width=1, height=32, depth=32, opacity=0.5),
    #  添加三个block,每个包含三个二卷积加一池化
    *block_2ConvPool( name='b2', botton='pool_b1', top='pool_b2', s_filer=256, n_filer=128, offset="(1,0,0)", size=(32,32,3.5), opacity=0.5 ),
    *block_2ConvPool( name='b3', botton='pool_b2', top='pool_b3', s_filer=128, n_filer=256, offset="(1,0,0)", size=(25,25,4.5), opacity=0.5 ),
    *block_2ConvPool( name='b4', botton='pool_b3', top='pool_b4', s_filer=64,  n_filer=512, offset="(1,0,0)", size=(16,16,5.5), opacity=0.5 ),

    #  瓶颈,为block5
    to_ConvConvRelu( name='ccr_b5', s_filer=32, n_filer=(1024,1024), offset="(2,0,0)", to="(pool_b4-east)", width=(8,8), height=8, depth=8, caption="Bottleneck"  ),
    to_connection( "pool_b4", "ccr_b5"),

    # 解码器
    #  多个block,每个为unconv
    *block_Unconv( name="b6", botton="ccr_b5", top='end_b6', s_filer=64,  n_filer=512, offset="(2.1,0,0)", size=(16,16,5.0), opacity=0.5 ),
    to_skip( of='ccr_b4', to='ccr_res_b6', pos=1.25),
    *block_Unconv( name="b7", botton="end_b6", top='end_b7', s_filer=128, n_filer=256, offset="(2.1,0,0)", size=(25,25,4.5), opacity=0.5 ),
    to_skip( of='ccr_b3', to='ccr_res_b7', pos=1.25),    
    *block_Unconv( name="b8", botton="end_b7", top='end_b8', s_filer=256, n_filer=128, offset="(2.1,0,0)", size=(32,32,3.5), opacity=0.5 ),
    to_skip( of='ccr_b2', to='ccr_res_b8', pos=1.25),    
    
    *block_Unconv( name="b9", botton="end_b8", top='end_b9', s_filer=512, n_filer=64,  offset="(2.1,0,0)", size=(40,40,2.5), opacity=0.5 ),
    to_skip( of='ccr_b1', to='ccr_res_b9', pos=1.25),
    
    to_ConvSoftMax( name="soft1", s_filer=512, offset="(0.75,0,0)", to="(end_b9-east)", width=1, height=40, depth=40, caption="SOFT" ),
    to_connection( "end_b9", "soft1"),
    #  结束
    to_end() 
    ]


def main():
    namefile = str(sys.argv[0]).split('.')[0]
    to_generate(arch, namefile + '.tex' )

if __name__ == '__main__':
    main()
    

其执行结果如下图。

补充说明

封装的各类层函数都在tikzeng.py文件中,可以修改并使用。具体的代码和结果可以在我的Github找到,欢迎star或者fork。实际项目请按照官方项目更新为主。

评论 15
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

周先森爱吃素

你的鼓励是我坚持创作的不懈动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值