#include<iostream>
#include<cstdio>
#include <algorithm>
#define MaxSize 100
#define INF 32767 //INF表示∞
#define MAXV 100 //最大顶点个数
using namespace std;
typedef int InfoType;
int sum=0;
//typedef struct
//{
// int no; //顶点编号
// InfoType info; //顶点其他信息
//} VertexType; //顶点类型
typedef struct //图的定义
{
int edges[MAXV][MAXV]; //邻接矩阵
int n,e; //顶点数,弧数
// VertexType vexs[MAXV]; //存放顶点信息
} MGraph; //图的邻接矩阵类型
typedef struct
{
int u; //边的起始顶点
int v; //边的终止顶点
int w; //边的权值
} Edge;
bool cmp(Edge a,Edge b)
{
return a.w<b.w;
}
void Kruskal(MGraph g)
{
int i,j,u1,v1,sn1,sn2,k;
int vset[MAXV];
Edge E[MaxSize]; //存放所有边
k=0; //E数组的下标从0开始计
for (i=0;i<g.n;i++) //由g产生的边集E
for (j=0;j<g.n;j++)
if (g.edges[i][j]!=0 && g.edges[i][j]!=INF)
{
E[k].u=i;E[k].v=j;E[k].w=g.edges[i][j];
k++;
}
sort(E,E+g.e,cmp);
for (i=0;i<g.n;i++) //初始化辅助数组
vset[i]=i;
k=1; //k表示当前构造生成树的第几条边,初值为1
j=0; //E中边的下标,初值为0
while (k<g.n) //生成的边数小于n时循环
{
u1=E[j].u;v1=E[j].v; //取一条边的头尾顶点
sn1=vset[u1];
sn2=vset[v1]; //分别得到两个顶点所属的集合编号
if (sn1!=sn2) //两顶点属于不同的集合,该边是最小生成树的一条边
{
printf(" 边(%d,%d)权值为:%d\n",u1,v1,E[j].w);
sum+=E[j].w;
k++; //生成边数增1
for (i=0;i<g.n;i++) //两个集合统一编号
if (vset[i]==sn2) //集合编号为sn2的改为sn1
vset[i]=sn1;
}
j++; //扫描下一条边
}
}
int main()
{
int i,j;
MGraph g;
g.n=6;g.e=20;
int a[6][MAXV]={
{0,5,8,7,INF,3},
{5,0,4,INF,INF,INF},
{8,4,0,5,INF,9},
{7,INF,5,0,5,6},
{INF,INF,INF,5,0,1},
{3,INF,9,6,1,0}};
for (i=0;i<g.n;i++) //建立图9.13(a)所示的图的邻接矩阵
for (j=0;j<g.n;j++)
g.edges[i][j]=a[i][j];
printf("从顶点0开始的最小生成树构成为:\n");
Kruskal(g);
cout<<"权值和为:"<<sum<<endl;
printf("\n");
}