线程池ThreadPoolExecutor参数设置

JDK1.5中引入了强大的concurrent包,其中最常用的莫过了线程池的实现ThreadPoolExecutor,它给我们带来了极大的方便,但同时,对于该线程池不恰当的设置也可能使其效率并不能达到预期的效果,甚至仅相当于或低于单线程的效率。

ThreadPoolExecutor类可设置的参数主要有:

  • corePoolSize

核心线程数,核心线程会一直存活,即使没有任务需要处理。当线程数小于核心线程数时,即使现有的线程空闲,线程池也会优先创建新线程来处理任务,而不是直接交给现有的线程处理。

核心线程在allowCoreThreadTimeout被设置为true时会超时退出,默认情况下不会退出。

  • maxPoolSize
当线程数大于或等于核心线程,且任务队列已满时,线程池会创建新的线程,直到线程数量达到maxPoolSize。如果线程数已等于maxPoolSize,且任务队列已满,则已超出线程池的处理能力,线程池会拒绝处理任务而抛出异常。

  • keepAliveTime

当线程空闲时间达到keepAliveTime,该线程会退出,直到线程数量等于corePoolSize。如果allowCoreThreadTimeout设置为true,则所有线程均会退出直到线程数量为0。

  • allowCoreThreadTimeout

是否允许核心线程空闲退出,默认值为false。

  • queueCapacity

任务队列容量。从maxPoolSize的描述上可以看出,任务队列的容量会影响到线程的变化,因此任务队列的长度也需要恰当的设置。


线程池按以下行为执行任务

  1. 当线程数小于核心线程数时,创建线程。
  2. 当线程数大于等于核心线程数,且任务队列未满时,将任务放入任务队列。
  3. 当线程数大于等于核心线程数,且任务队列已满
    1. 若线程数小于最大线程数,创建线程
    2. 若线程数等于最大线程数,抛出异常,拒绝任务

系统负载

参数的设置跟系统的负载有直接的关系,下面为系统负载的相关参数:

  • tasks,每秒需要处理的最大任务数量
  • tasktime,处理第个任务所需要的时间
  • responsetime,系统允许任务最大的响应时间,比如每个任务的响应时间不得超过2秒。


参数设置


corePoolSize:

每个任务需要tasktime秒处理,则每个线程每钞可处理1/tasktime个任务。系统每秒有tasks个任务需要处理,则需要的线程数为:tasks/(1/tasktime),即tasks*tasktime个线程数。假设系统每秒任务数为100~1000,每个任务耗时0.1秒,则需要100*0.1至1000*0.1,即10~100个线程。那么corePoolSize应该设置为大于10,具体数字最好根据8020原则,即80%情况下系统每秒任务数,若系统80%的情况下第秒任务数小于200,最多时为1000,则corePoolSize可设置为20。


queueCapacity:

任务队列的长度要根据核心线程数,以及系统对任务响应时间的要求有关。队列长度可以设置为(corePoolSize/tasktime)*responsetime: (20/0.1)*2=400,即队列长度可设置为400。

队列长度设置过大,会导致任务响应时间过长,切忌以下写法:

LinkedBlockingQueue queue = new LinkedBlockingQueue();

这实际上是将队列长度设置为Integer.MAX_VALUE,将会导致线程数量永远为corePoolSize,再也不会增加,当任务数量陡增时,任务响应时间也将随之陡增。


maxPoolSize:

当系统负载达到最大值时,核心线程数已无法按时处理完所有任务,这时就需要增加线程。每秒200个任务需要20个线程,那么当每秒达到1000个任务时,则需要(1000-queueCapacity)*(20/200),即60个线程,可将maxPoolSize设置为60。


keepAliveTime:

线程数量只增加不减少也不行。当负载降低时,可减少线程数量,如果一个线程空闲时间达到keepAliveTiime,该线程就退出。默认情况下线程池最少会保持corePoolSize个线程。


allowCoreThreadTimeout:

默认情况下核心线程不会退出,可通过将该参数设置为true,让核心线程也退出。


以上关于线程数量的计算并没有考虑CPU的情况。若结合CPU的情况,比如,当线程数量达到50时,CPU达到100%,则将maxPoolSize设置为60也不合适,此时若系统负载长时间维持在每秒1000个任务,则超出线程池处理能力,应设法降低每个任务的处理时间(tasktime)。



### 回答1: 线程池参数的合理配置取决于应用程序的负载和可用的计算资源。以下是一些常用的线程池参数配置建议: 1. 核心线程数:根据应用程序的负载和可用的计算资源,设置合适的核心线程数。通常情况下,核心线程数应该等于可用处理器的数量或稍微大一些。 2. 最大线程数:根据应用程序的负载和可用的计算资源,设置合适的最大线程数。最大线程数的设置应该根据应用程序的可用内存和CPU使用率进行调整。 3. 空闲线程存活时间:根据应用程序的负载和可用的计算资源,设置合适的空闲线程存活时间。如果任务数量不够多,可以适当降低空闲线程的存活时间,以减少资源占用。 4. 等待队列:根据应用程序的负载和可用的计算资源,选择合适的等待队列实现。如果任务数量比较大,可以选择使用 ArrayBlockingQueue 或者 LinkedBlockingQueue,如果任务数量比较小,可以选择使用 SynchronousQueue。 5. 线程工厂:根据需要自定义线程工厂,设置线程的名称、优先级等属性,以便于监控线程池的执行情况。 总之,线程池参数的合理配置需要根据具体的应用程序需求进行调整。在配置时,需要考虑应用程序的负载、可用的计算资源和线程池的性能等因素,以达到最优的线程池性能。 ### 回答2: 线程池的参数配置需要根据实际场景和需求进行合理的选择。以下是一些常见的线程池参数配置建议: 1. 核心线程数(corePoolSize)的配置应根据系统的负载情况和并发任务的数量来确定。如果系统负载较重或并发任务较多,可以适当调高核心线程数,以确保有足够的线程处理任务,避免任务等待;如果负载较轻或并发任务较少,可以适当降低核心线程数,减少资源占用。 2. 最大线程数(maximumPoolSize)的配置应根据系统的资源情况和并发任务的特点来确定。最大线程数一般要大于核心线程数,以应对突发的任务请求。但过高的最大线程数可能导致资源占用过多,导致系统性能下降或者出现资源竞争问题。 3. 任务队列(workQueue)的选择需要根据任务的特点和对任务响应时间的要求来确定。如果任务量较小或者希望快速响应任务,可以选择使用SynchronousQueue,它会直接将任务交给线程处理,不会进行任务排队;如果任务量较大或者希望控制任务的处理速度,可以选择使用有界队列(如ArrayBlockingQueue或LinkedBlockingQueue),可以避免任务直接交给线程处理,使系统更稳定。 4. 空闲线程的存活时间(keepAliveTime)的配置需要根据任务的特点和系统资源的情况来确定。若任务处理时间较短且任务量持续较大,可以适当减少空闲线程的存活时间,避免资源浪费。若任务处理时间较长或任务量较小,可以适当增加空闲线程的存活时间,提高线程的复用率。 5. 拒绝策略(rejectedExecutionHandler)的选择需要根据业务需求和系统特点来确定。常见的拒绝策略有AbortPolicy(默认)、CallerRunsPolicy、DiscardPolicy和DiscardOldestPolicy。根据具体情况,可选择合适的拒绝策略,处理不能接受的任务。 总之,线程池参数配置的合理与否,需要充分考虑系统的负载情况、任务的特点和业务需求,通过调优参数来达到最佳的性能和效果。 ### 回答3: 线程池是一种用于管理和调度线程的机制,在并发编程中起到了重要的作用。但是线程池的性能和效果取决于参数的配置。下面是线程池参数配置的一些建议。 1. 核心线程数(corePoolSize):是线程池中的最小线程数,即使线程池没有任务执行,核心线程也会一直存在。根据系统的负载和处理的任务数来调整核心线程数,一般建议设置为CPU核心数的1至2倍。 2. 最大线程数(maximumPoolSize):该参数是线程池中最多容纳的线程数。根据系统的负载和任务的处理能力来调整最大线程数,一般建议设置为核心线程数的2至4倍。 3. 阻塞队列(workQueue):用于存放等待执行的任务。不同类型的任务可选择不同的队列,如有界队列ArrayBlockingQueue和无界队列LinkedBlockingQueue。选择合适的队列大小或容量取决于系统的负载和任务的数量,一般建议使用有界队列,避免任务过多导致系统资源耗尽。 4. 线程存活时间(keepAliveTime):当线程池中的线程超过核心线程数时,多余的空闲线程会被回收,该参数设置了空闲线程的存活时间。根据任务的类型和执行耗时来调整存活时间,以避免频繁的线程创建和销毁。 5. 拒绝策略(rejectedExecutionHandler):当线程池无法处理新提交的任务时,按照预先定义好的拒绝策略进行处理。常见的策略有AbortPolicy(丢弃任务并抛出异常)、CallerRunsPolicy(由调用者线程处理任务)等。选择合适的拒绝策略依赖于任务的重要性和系统的容忍性。 综上所述,线程池参数的配置需要根据系统负载、任务数量和任务类型等因素进行调整。合理的配置可以提高系统的性能、响应速度和资源利用率,而不合理的配置可能会导致性能下降、资源浪费或系统崩溃。因此,在配置线程池参数时需综合考虑各种因素,根据实际情况进行调整和优化。
评论 14
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值