CF协同过滤与SVD分解

协同过滤

具体可以参考这篇文章:https://www.cnblogs.com/lesleysbw/p/6024379.html
协同过滤CF分为两种:基于客户的CF和基于物品的CF。
协同过滤的三个步骤:

1.收集用户偏好

这个是生成数据矩阵的过程,最重要的有两点:降噪和归一化。降噪需要使用SVD分解来降低信息冗余;归一化是为了将不同特征的影响视为一致。

2.找到相似的用户或物品

核心是:距离的衡量标准。
关于相似度的计算,现有的几种基本方法都是基于向量(Vector)的,其实也就是计算两个向量的距离,距离越近相似度越大。在推荐的场景中,在用户 - 物品偏好的二维矩阵中,我们可以将一个用户对所有物品的偏好作为一个向量来计算用户之间的相似度,或者将所有用户对某个物品的偏好作为一个向量来计算物品之间的相似度。
一般有:欧氏距离,皮尔逊距离,cos距离等。

3.计算推荐

基于用户的 CF 的基本思想相当简单,基于用户对物品的偏好找到相邻邻居用户,然后将邻居用户喜欢的推荐给当前用户。
基于物品的 CF 的原理和基于用户的 CF 类似,只是在计算邻居时采用物品本身,而不是从用户的角度,即基于用户对物品的偏好找到相似的物品,然后根据用户的历史偏好,推荐相似的物品给他。

协同过滤与SVD

协同过滤可以利用SVD分解将原本稀疏的高维矩阵映射到低维矩阵中,降低了相似度计算的复杂度,提高了推荐系统引擎的效果。
SVD是提取信息的强大工具,利用SVD实现,我们可以用小得多的数据集来表示原始数据集。这样做,实际上是去除了噪声和冗余信息。简单版本的推荐系统能够计算项或者人之间的相似度,更先进的方法则利用SVD从数据中构建一个主题空间,然后再在该空间下计算其相似度。
如果我们将数据排列成一个矩阵,行是客户信息,列是客户对每个商品的评分,那么矩阵为

*鳗鱼炸鸡寿司烤肉猪肉
Ed00022
Pe00033
Ae11100
Je55500

对这个矩阵做奇异值分解:
Data=UΣVT D a t a = U Σ V T
**
那么可以看出U矩阵是对列进行压缩,也就是将每个客户的特征从5个变为我们想要的k个,这样我们可以将计算客户之间的相似度的计算变得简单;
V矩阵是对行进行压缩,也就是当我们计算物品之间的相似度的时候,可以将每个物品的得分从4维降为想要的k维,从而降低计算量。奇异值的含义就是主题空间的个数。

协同过滤与PCA降维

协同过滤是基于PCA降维的,主要原理都使用SVD分解得到特征空间中的主要信息,去除冗余信息,使得计算变得更加简单。

  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值