NVIDIA Tesla T4 GPU参数

以下是通过CUDA例程deviceQuery得到的结果:


CUDA Device Query (Runtime API) version (CUDART static linking)

Detected 1 CUDA Capable device(s)

Device 0: "Tesla T4"
  CUDA Driver Version / Runtime Version          10.2 / 10.2
  CUDA Capability Major/Minor version number:    7.5
  Total amount of global memory:                 15206 MBytes (15944253440 bytes)
  (40) Multiprocessors, ( 64) CUDA Cores/MP:     2560 CUDA Cores
  GPU Max Clock rate:                            1590 MHz (1.59 GHz)
  Memory Clock rate:                             5001 Mhz
  Memory Bus Width:                              256-bit
  L2 Cache Size:                                 4194304 bytes
  Maximum Texture Dimension Size (x,y,z)         1D=(131072), 2D=(131072, 65536), 3D=(16384, 16384, 16384)
  Maximum Layered 1D Texture Size, (num) layers  1D=(32768), 2048 layers
  Maximum Layered 2D Texture Size, (num) layers  2D=(32768, 32768), 2048 layers
  Total amount of constant memory:               65536 bytes
  Total amount of shared memory per block:       49152 bytes
  Total number of registers available per block: 65536
  Warp size:                                     32
  Maximum number of threads per multiprocessor:  1024
  Maximum number of threads per block:           1024
  Max dimension size of a thread block (x,y,z): (1024, 1024, 64)
  Max dimension size of a grid size    (x,y,z): (2147483647, 65535, 65535)
  Maximum memory pitch:                          2147483647 bytes
  Texture alignment:                             512 bytes
  Concurrent copy and kernel execution:          Yes with 3 copy engine(s)
  Run time limit on kernels:                     No
  Integrated GPU sharing Host Memory:            No
  Support host page-locked memory mapping:       Yes
  Alignment requirement for Surfaces:            Yes
  Device has ECC support:                        Enabled
  CUDA Device Driver Mode (TCC or WDDM):         TCC (Tesla Compute Cluster Driver)
  Device supports Unified Addressing (UVA):      Yes
  Device supports Compute Preemption:            Yes
  Supports Cooperative Kernel Launch:            Yes
  Supports MultiDevice Co-op Kernel Launch:      Yes
  Device PCI Domain ID / Bus ID / location ID:   0 / 1 / 0
  Compute Mode:
     < Default (multiple host threads can use ::cudaSetDevice() with device simultaneously) >

deviceQuery, CUDA Driver = CUDART, CUDA Driver Version = 10.2, CUDA Runtime Version = 10.2, NumDevs = 1
Result = PASS


 

 

 

### NVIDIA T4 GPU Specifications and Information NVIDIA Tesla T4 (Turing architecture) represents an advanced data center GPU designed specifically for AI inference applications. This card brings significant improvements over previous generations by integrating Tensor Cores which are optimized for deep learning tasks. #### Key Features of NVIDIA T4 GPU - **Architecture**: Based on the efficient Turing architecture, offering enhanced performance per watt. - **Memory Configuration**: Equipped with 16 GB GDDR6 memory providing high bandwidth necessary for complex computations[^1]. - **Performance Metrics**: - FP32 Performance: Up to 8.1 TFLOPS - INT8 Performance: Up to 65 TOPS - INT4 Performance: Up to 130 TOPS - **Power Consumption**: Operates within a power envelope ranging between 70W to 90W depending upon workload requirements. To fully leverage these capabilities, it's important to have compatible software environments set up properly including installation of appropriate drivers and development tools such as those provided through the NVIDIA CUDA Toolkit available at http://developer.nvidia.com/cuda-downloads. For optimal operation after setting up hardware components like GPUs, ensuring correct installation of updated graphics drivers plays a crucial role. Users should visit NVIDIA’s official website where they can choose their specific GPU model along with operating system details from dropdown options before proceeding further according to given guidelines found under 'ADDITIONAL INFORMATION' tab regarding detailed steps involved during this process[^2]. Once all prerequisites mentioned above get fulfilled successfully then one might consider updating related packages using Conda package manager commands if working inside Anaconda environment; examples include refreshing Navigator interface or upgrading client utilities accordingly[^3]: ```bash conda update anaconda-navigator && anaconda-navigator --reset conda update anaconda-client && conda update -f anaconda-client ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值