NVIDIA T4 GPU和V100 GPU是针对不同应用场景设计的,它们在性能上有显著差异。以下是一些关键的性能对比:
-
架构:
- T4:基于Turing架构,是NVIDIA推出的面向数据中心和工作站的中端GPU,主要针对推理和一些不太复杂的训练任务。
- V100:基于Volta架构,是NVIDIA推出的高端GPU,主要针对高性能计算(HPC)、深度学习和科学计算等要求极高的应用。
-
浮点性能:
- T4:提供大约8.1 TFLOPS的单精度(FP32)性能。
- V100:提供高达14 TFLOPS的单精度(FP32)性能,几乎是T4的两倍。
-
显存容量和带宽:
- T4:通常配备16GB GDDR6显存,带宽为208 GB/s。
- V100:配备16GB或32GB的HBM2显存,带宽高达900 GB/s,远高于T4。
-
Tensor核心s:
- T4:没有Tensor Cores,这些是专为深度学习混合精度运算设计的。
- V100:拥有Tensor Cores,可以提供高达112 TFLOPS的Tensor Float 32(TF32)性能和112 TFLOPS的FP16性能。
-
功耗:
- T4:功耗较低,大约70瓦。
- V100:功耗较高,大约300瓦。
-
适用场景:
- T4:适合推理、小型模型训练、数据科学和一些不太复杂的机器学习任务。
- V100:适合大规模训练、复杂的深度学习模型、科学计算和需要极高计算性能的场景。
-
成本:
- T4:成本相对较低,适合预算有限或计算需求不高的用户。
- V100:成本较高,但提供了业界领先的性能。
-
多GPU扩展性:
- T4:虽然可以用于多GPU任务,但其性能和带宽限制可能成为瓶颈。
- V100:设计用于大规模并行计算,拥有更好的扩展性和更高的带宽。
总的来说,V100在几乎所有性能指标上都优于T4,但价格也更高。选择哪种GPU取决于你的具体需求、预算和应用场景。对于需要极高计算性能和大规模并行处理的任务,V100是更好的选择;而对于成本敏感或计算需求较低的任务,T4可能是一个更合适的选择。