# 空间点到直线垂足坐标的解算方法

点N在直线AB上，根据向量共线：

(2)

由（2）得：

(3)

把（3）式代入（1）式，式中只有一个未知数k，整理化简解出k：

(4)
把（4）式代入（3）式即得到垂足N的坐标。

// 二维空间点到直线的垂足
struct Point
{
double x,y;
}
Point GetFootOfPerpendicular(
const Point &pt,     // 直线外一点
const Point &begin,  // 直线开始点
const Point &end)   // 直线结束点
{
Point retVal;

double dx = begin.x - end.x;
double dy = begin.y - end.y;
if(abs(dx) < 0.00000001 && abs(dy) < 0.00000001 )
{
retVal = begin;
return retVal;
}

double u = (pt.x - begin.x)*(begin.x - end.x) +
(pt.y - begin.y)*(begin.y - end.y);
u = u/((dx*dx)+(dy*dy));

retVal.x = begin.x + u*dx;
retVal.y = begin.y + u*dy;

return retVal;
}

// 三维空间点到直线的垂足
struct Point
{
double x,y,z;
}
Point GetFootOfPerpendicular(
const Point &pt,     // 直线外一点
const Point &begin,  // 直线开始点
const Point &end)   // 直线结束点
{
Point retVal;

double dx = begin.x - end.x;
double dy = begin.y - end.y;
double dz = begin.z - end.z;
if(abs(dx) < 0.00000001 && abs(dy) < 0.00000001 && abs(dz) < 0.00000001 )
{
retVal = begin;
return retVal;
}

double u = (pt.x - begin.x)*(begin.x - end.x) +
(pt.y - begin.y)*(begin.y - end.y) + (pt.z - begin.z)*(begin.z - end.z);
u = u/((dx*dx)+(dy*dy)+(dz*dz));

retVal.x = begin.x + u*dx;
retVal.y = begin.y + u*dy;
retVal.y = begin.z + u*dz;

return retVal;
}