model of financial derivatives
文章平均质量分 97
fgh431
非淡泊无以明志
展开
-
8 数值实现方法
文章目录8.1二叉树数值实现衍生品定价的方法非常重要常用的数值方法:解析闭形式公式,二叉树,有限差分方法蒙特卡罗模拟能用解析闭形式给出的期权价格不多见,即使能,也要许多不切实际的假设。不介绍。FFT日益成为重要方法。在下面一章专门介绍。8.1二叉树二叉树定价模型Sharpe提,然后Cox,Ross和 Rubinstein等完善最先用于美式期权,现仍...原创 2020-04-20 14:32:08 · 345 阅读 · 0 评论 -
1 金融衍生品引论
文章目录1.1现金和银行存款的时间价值1.2均值、标准差及波动率1.1现金和银行存款的时间价值现金的价值是随着时间而变化的。银行存入1美元时,未来的任意时刻,账户里除1美元,还得到利息。如果年利率是rrr,且每年计息一次,一年后得到(1+r)美元(1+r)美元(1+r)美元半年计息一次。半年后银行存款为(1+r2)美元(1+\frac{r}{2})美元(1+2r)美元并且...原创 2020-04-20 09:44:55 · 553 阅读 · 0 评论 -
第三章-看涨、看跌期权的性质-3.3-看涨期权的性质(4)
定理3.7若时间(t,T)(t,T)(t,T)内无股票红利,有(3.6)CtEu(K,T;S)=CtAm(K,T;S)C_t^{Eu}(K,T;S)=C_t^{Am}(K,T;S) \tag{3.6}CtEu(K,T;S)=CtAm(K,T;S)(3.6)证明想想怎么证明呢?持有美式看涨期权直到期满时间TTT,我们应当重新获得同欧式期权完全相同的收益,因此由无套利,有:CtEu(...原创 2019-07-14 18:11:11 · 243 阅读 · 0 评论 -
第三章-看涨、看跌期权的性质-3.3-看涨期权的性质(5)
定理3.8如果两个执行价格K1>K2K_1>K_2K1>K2,那么无论是否有红利,对欧式期权:(3.7)CEu(K1,T)≤CEu(K2,T)C^{Eu}(K_1,T)\le C^{Eu}(K_2,T) \tag{3.7}CEu(K1,T)≤CEu(K2,T)(3.7)也有(3.8)CAm(K1,T)≤CAm(K2,T)C^{Am}(K_1,T)\...原创 2019-07-14 18:13:03 · 234 阅读 · 0 评论 -
第三章-看涨、看跌期权的性质-3.3-看涨期权的性质(6)
定理3.9欧式和美式看涨(3.9)limK→0CEu(K,T;S)=S\lim_{K \to 0}C^{Eu}(K,T;S)=S \tag{3.9}K→0limCEu(K,T;S)=S(3.9)(3.10)limK→0CAm(K,T;S)=S\lim_{K \to 0}C^{Am}(K,T;S)=S \tag{3.10}K→0limCAm(K,T;S)=S(3.10)也就是说执行价...原创 2019-07-14 18:12:13 · 840 阅读 · 0 评论 -
第三章-看涨、看跌期权的性质-3.3-看涨期权的性质(7)
定理3.11对两执行价格K1>K2K_1>K_2K1>K2,对欧式看涨,(3.13)CtEu(K2,T)−CtEu(K1,T)≤Bt(T)(K1−K2)C_t^{Eu}(K_2,T)-C_t^{Eu}(K_1,T) \leq B_t(T)(K_1-K_2) \tag{3.13}CtEu(K2,T)−CtEu(K1,T)≤Bt(T)(K1−K2...原创 2019-07-14 18:11:59 · 776 阅读 · 0 评论 -
2常见的衍生头寸
2常见的衍生头寸原创 2019-10-11 11:58:59 · 762 阅读 · 0 评论 -
第三章-看涨、看跌期权的性质-3.2-看涨看跌期权的平价原理
期权平价原理,亦称买入卖出平价原理在无红利条件下,我们有:(3.1)CtEu(K,T;S)+Bt(T)K=PtEu(K,T;S)+SC_{t}^{Eu}(K,T;S)+B_{t}(T)K=P_{t}^{Eu}(K,T;S)+S \tag{3.1}CtEu(K,T;S)+Bt(T)K=PtEu(K,T;S)+S(3.1)这个证明怎么证明呢?我们先想想再看答案。我们考虑两个组合:买入执...原创 2019-07-14 18:13:22 · 1348 阅读 · 0 评论