bmjqxx+DML
文章平均质量分 98
fe
fgh431
非淡泊无以明志
展开
-
1 特征工程
文章目录1 特征归ー化场景描述为什么需对数值类型的特征做归ー化?数据和特征便是“米”,模型和算法是“巧妇”。没充足数据、合适特征,再强大的模型也无法得到满意输出。数据和特征往往决定了结果的上限,模型、算法的选择及优化则逐步接近这个上限。 特征工程对原始数据进行一系列工程处理,将其提炼为特征,作为输入供算法和模型使用。本质,特征工程是一个表示和展现数据的过程。特征工程旨在...原创 2020-03-12 20:25:06 · 525 阅读 · 0 评论 -
4 降维
文章目录PCA最大方差理论场景描述问题分析与解答PCA最大方差理论场景描述对原始数据特征提取,有时会得到较高维的特征向量在这些向量所处的高维空间中,含很多的冗余和噪声。通过降维的方式来寻找数据内部的特性,从而提升特征表达能力,降低训练复杂度。Principal Components Analysis降维中最经興,有100多年线性、非监督、全局的降维问题如何定义主成分?从这...原创 2020-01-09 14:47:06 · 351 阅读 · 0 评论 -
6 概率图模型
文章目录1 概率图模型的联合概率分布场景描述能否写出图6.1(a)中贝叶斯网络的联合概率分布?一个词形容概率图模型,那就是“优雅”。对于ー个实际问题,希望能挖掘隐含在数据中的知识。概率图模型构建这样一幅图,用观测结点表示观测到的数据,隐含结点表示潜在的知识,边来描述知识与数据的相互关系,最后基于这样的关系图获得一个概率分布 概率图中的节点分为隐含节点和观测节点,...原创 2020-03-20 09:36:11 · 626 阅读 · 0 评论 -
7 优化算法
文章目录1有监督学习的损失函数场景描述有监督学习涉及的损失函数有哪些?请列举并简述它们的特点。优化是应用数学的分支,机器学习核心。机器学习算法=模型表征+模型评估+优化算法。优化算法所做的事情就是在模型表征空间中找到模型评估指标最好的模型。不同的优化算法对应的模型表征和评估指标不尽相同,SVM对应的模型表征和评估指标分别为线性分类模型和最大间隔,逻辑回归对应的模型表征和评估指标为线性...原创 2020-03-12 20:39:44 · 819 阅读 · 0 评论 -
8 采样
文章目录1 采样的作用场描述举例说明采样在机器学习中的应用。分析与解答总结与扩展2 均匀分布随机数场景描述采样,从特定的概率分布中抽取样本点。它可将复杂的分布简化为离散的样本点;可用重采样对样本集进行调以更好地适应后期的模型学习;用于随机模拟以进行复杂模型的近似求解或推理采样在数据可视化方面也有应用,帮助人们快速了解数据的结构和特性。 均匀、高斯,很多编程语言里面都有直接的果样...原创 2020-01-09 17:54:49 · 653 阅读 · 0 评论 -
9 前向NN
文章目录1 多层感知机与布尔函数场景描述多层感知机表示异或时最少要几个隐层(二元输入)?Deep Feedforward Networks)是一种典型的深度学习模型。其目标为拟合某个函数,即定义映射y=f(x;)将输入x转化为某种预测的输出y,并同时学习网络参数的值,使模型得到最优的函数近似。由于从输入到输出的过程中不存在与模型自身的反馈连接,此类模型被称为“前馈”。 深度前馈网...原创 2020-03-13 15:16:14 · 546 阅读 · 0 评论 -
10 RNN
文章目录1 RNN和CNN场景描述处理文本时,CNN与前馈神经网络相比特点?1 RNN和CNN场景描述传统方法文本分类时,通常将一篇文章所对应的TF-IDF向量作为输入TF-IDF向量的维度是词汇表的大小。用前馈神经网络,如卷积神经网络对文本数据建模时,一般会如何操作?用RNN对文本这种带有序列信息的数据进行建模时,相比CNN又会有什么不同? 知识点RNN,前馈神经网络处理文本时,CNN与前馈神经网络相比特点?传统一般将TF-IDF向量作为特征输入。丢失了原创 2020-06-25 23:54:39 · 387 阅读 · 0 评论 -
eleven 强化learn
文章目录1强化学习基础场景描述强化学习80年代兴起,受行为心理学启发而来的一个机器学习领域,它关注身处某个环境中的决策器通过采取行动获得最大化的累积收益和传统监督学习不同,强化学习中,并不直接给決策器的输出打分。決策器只能得到一个间接反馈,无法获得一个正确的输入/输出对,因此需要在不断的尝试中优化自己的策略以获得更高收益广义上,大部分涉及动态系统的決策学习过程都可看成是一种强化学习强化学习的应用非常广泛括博弈论、控制论、优化等不同领域这两年Alphago及其升级原创 2020-07-22 11:55:16 · 164 阅读 · 0 评论 -
12 集成学习
文章目录1集成学习的种类集成学习分哪几种?异同?BoostingBagging2集成学习的步聚和例子一种是尝试各种模型,选择其中表现最好的模型做重点调参优化。另一种是集各家之长,综合考虑,得到最终決策。后一策略核心,将多个分类器的结果统一成一个最终決策用这类策略的机器学习方法统称集成学习每个单独的分类器称基分类器 基分类器类似“臭皮匠”,复杂模型是“诸葛亮”。即使单一...原创 2020-03-24 14:45:46 · 415 阅读 · 0 评论 -
13 生成式对抗网络
文章目录1 初识GANs的秘密场景描述1 简述GANs的基本思想和训练过程。Generative Adversarial Networks,是一个训练生成模型的新框架GANs刚提出时没晦涩数学推演,契合了万物在相生相克中演化。GANs想象成一幅太极图,“太极生两仪”,“两仪”好比生成器和判别器,生成器负责生,判别器负责灭一生一灭间有了万物。生成器在初始混沌中孕育有形万物,...原创 2020-03-27 00:44:33 · 255 阅读 · 0 评论