[机器学习]Lasso,L1范数,及其鲁棒性

本文探讨了Lasso回归,它结合了子集选择的可解释性和岭回归的稳定性。Lasso通过L1范数实现系数的稀疏性,对大噪声不敏感,提高了模型的鲁棒性。L1范数相比于L2范数,其线性增长对异常值有更强的抑制效果,并且在贝叶斯框架下,L1对应拉普拉斯分布,适合描述大幅度噪声。
摘要由CSDN通过智能技术生成

前言:本文包括以下几个方面,1. 介绍Lasso,从最初提出Lasso的论文出发,注重动机;

2. L1和L2范数的比较,注重L1的稀疏性及鲁棒性;

3. 从误差建模的角度理解L1范数

1. lasso

最早提出Lasso的文章,文献[1],已被引用n多次。

注:对于不晓得怎么翻译的英文,直接搬来。

1) 文献[1]的动机:

在监督学习中,ordinary least squares(OLS) estimates 最小化所有数据的平方残差(即只是让经验误差最小化),存在2个问题:

1是预测误差(prediction accuracy):OLS estimates总是偏差小,方差大;

2是可解释性(interpretation):我们希望选出一些有代表性的子集就ok了。

【Lasso还有个缺点,ref8:当p>>n时,(如 医学样本,基因和样本数目),Lasso却最多只能选择n个特征】

为了解决上面2个问题,2种技术应运而生:

1是subset selection:其可解释性强,但预测精度可能会很差;

2是岭回归(ridge regression):其比较稳定(毕竟是添加了正则化项,把经验风险升级为结构风险),

                                                但可解释性差(

  • 6
    点赞
  • 33
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值