[机器学习][源码]用单层感知机对字母L和I分类

本文介绍了作者在机器学习课程中使用单层感知机对字母L和I进行分类的作业。通过3x3二进制矩阵表示字母,并训练神经网络。在没有噪声数据时,算法在训练集上收敛,但在测试集上表现不佳;加入噪声数据后,算法无法收敛,输出质量降低。
摘要由CSDN通过智能技术生成

研一机器学习课程,外教布置的作业。当时写代码、实验结果分析的水平真是“青涩”啊......

一. 题目:

Implement a classifier for characters L and I using the discrete perceptron learning algorithm. You may use any implementation.

Specifications:

·       Use a 3 x 3 binary matrix representation.

·       Your neural network should have one neuron. 

What happens when the letters are “noisy”?

二.  解答

分析:用3*3矩阵表示L和I,每个字母都有多种表示方式。注意考虑多方向、字母粗细。

          每个样本都是9维(每个dim是0或者1),w也是9维。

1.      Code(using MATLAB)

% initialization

% train data: training set L-X1 (10 data); train set I-X2 (6data)

% test data: test set L-T1 (5 data); test set I-T2 (5 data)

% noisy data: 1 noise L-N1; 1 noise I-N2

n=0.05;                          %step size

w=ones(size(X1,1),1);

wt=2*w;

temp=w;

j=0;

%while loop

while (wt-w)'*(wt-w)>0.0001   % wt: 本次iteration训练后所得,w: 上一次iteration结果。若相差很小,就结束循环。

   j=j+1; %--iteration 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值