【数学】二项式定理

文章介绍了杨辉三角与二项式定理的关系,通过举例展示了如何将二项式的展开式与杨辉三角的系数对应起来,即每个展开项的系数是组合数(nchoosem),并给出了NOIP2013普及组的一个相关练习题作为应用实例。
摘要由CSDN通过智能技术生成

前置知识


引入

学过数学竞赛的人肯定背过这些式子:

( x + y ) 0 = 1 x 0 y 0 ( x + y ) 1 = 1 x 1 y 0 + 1 x 0 y 1 ( x + y ) 2 = 1 x 2 y 0 + 2 x 1 y 1 + 1 x 0 y 2 ( x + y ) 3 = 1 x 3 y 0 + 3 x 2 y 1 + 3 x 1 y 2 + 1 x 0 y 3 ⋮ 那么, ( x + y ) k =   ? (x+y)^0=1x^0y^0\\ (x+y)^1=1x^1y^0+1x^0y^1\\ (x+y)^2=1x^2y^0+2x^1y^1+1x^0y^2\\ (x+y)^3=1x^3y^0+3x^2y^1+3x^1y^2+1x^0y^3\\ \vdots\\ \text{那么,}(x+y)^k=\space\huge\color{red}? (x+y)0=1x0y0(x+y)1=1x1y0+1x0y1(x+y)2=1x2y0+2x1y1+1x0y2(x+y)3=1x3y0+3x2y1+3x1y2+1x0y3那么,(x+y)k= ?


f 1 f1 f1

我们不妨将系数提取出来:

1 1 1 1 2 1 1 3 3 1 \begin{array}{cc} &&&&1\\ &&&1&&1\\ &&1&&2&&1\\ &1&&3&&3&&1 \end{array} 1113121311

容易发现,上表为杨辉三角。将杨辉三角转化为组合数,得到二项式定理。


f 2 f2 f2

我们回归原式 ( x + y ) k (x+y)^k (x+y)k
展开为乘法,即 ( x + y ) k = ( x + y ) ( x + y ) ⋯ ( x + y ) ⏟ k  个 (x+y)^k=\underbrace{(x+y)(x+y)\cdots(x+y)}_{k\space\text{个}} (x+y)k=k  (x+y)(x+y)(x+y)
接下来关注展开为多项式后的 x i y k − i   ( 0 ≤ i ≤ k ) x^iy^{k-i}\space(0\le i\le k) xiyki (0ik) 一项,容易发现这一项的系数可以理解为从上述 k k k 个二项式中选择 i i i 个为 x x x,其他 k − i k-i ki 个为 y y y 相乘的方案数。故其系数为组合数 ( k i ) {k\choose i} (ik)


综上,有二项式定理 ( x + y ) k = ∑ i = 0 i ≤ k ( k i ) ⋅ x i y k − i (x+y)^k=\sum_{i=0}^{i\le k}{k\choose i}\cdot x^iy^{k-i} (x+y)k=i=0ik(ik)xiyki


练习(这也有

注:本文将组合记为 ( n m ) {n\choose m} (mn),有 ( n m ) = C n m {n\choose m}=C^m_n (mn)=Cnm

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值