【数据结构】平衡树引入

数据结构-平衡树


前置知识
  • 二叉树
  • 二叉树的中序遍历

问题

维护一个数据结构,支持插入元素、删除元素、查询元素的排名、查询排名对应的元素、查询元素的前驱、查询元素的后继等。

BST(二叉搜索树)

作为一个基本无效(很容易卡掉)的数据结构,将其放在这里讲可能更为合适。。。
BST 的思想,来自于二叉树的 DFS 序。
设想一下,若一个二叉树的中序遍历正好递增,也就是说,始终有 左儿子 ≤ 根 ≤ 右儿子 左儿子\le根\le右儿子 左儿子右儿子,那么不就可以达到 O ( 树高 ) O(\text{树高}) O(树高) 的复杂度了吗?
可能不是这样。设想一组数据,令插入的第 i i i 个节点为 i i i,BST 便会退化为 O ( n 2 ) O(n^2) O(n2),长成一条链。

思路

为了弥补 BST 的各种劣势,聪明的 OIers 发明了平衡树。
对于上面卡掉 BST 的样例,平衡树的一种画法长这样:

可以看出来,平衡树是非常平衡的。
平衡树的重要处理就是维护其平衡性。
接下来介绍一下用来维护平衡树的平衡性质的两种操作——左旋( Zag \text{Zag} Zag)和右旋( Zig \text{Zig} Zig

  • Zag \text{Zag} Zag
    如果有一个失衡子树长这样:

    需要将节点 q \text q q 旋转至节点 p \text p p,我们可以这样:

    注意到,其中序遍历是不变的。
  • Zig \text{Zig} Zig
    如果有一个失衡子树长这样:

    需要将节点 q \text q q 旋转至节点 p \text p p,我们可以这样:

    注意到,其中序遍历是不变的。

由于不同的平衡树对失衡子树的处理方式是不同的,所以这里不再赘述,可以去下方的文章学习。


数据结构参数
  • 单次修改时间复杂度: Θ ( log ⁡ n ) \Theta(\log n) Θ(logn)
  • 单次查询时间复杂度: Θ ( log ⁡ n ) \Theta(\log n) Θ(logn)
  • 空间复杂度: Θ ( n ) \Theta(n) Θ(n)

代码

这里放一下 Zag \text{Zag} Zag Zig \text{Zig} Zig

void Zag(int &p){//左旋 
	int q=t[p].r;
	t[p].r=t[q].l;
	t[q].l=p;p=q;
	Pushup(t[p].l);Pushup(p);
}
void Zig(int &p){//右旋 
	int q=t[p].l;
	t[p].l=t[q].r;
	t[q].r=p;p=q;
	Pushup(t[p].r);Pushup(p);
}

接下来是三种基本的平衡树:

  • AVL
  • Treap
  • Splay
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值