算法-01背包
前置知识
思路
01背包一般分为两种,不妨叫做价值01背包和判断01背包。
价值01背包
01背包问题是这样的一类问题:给定一个背包的容量
m
m
m 和
n
n
n 个物品,每个物品有重量
w
w
w 和价值
v
v
v,求不超过背包容量时可以装下的最大价值。
对于这类问题,我们使用DP,设
f
i
,
j
f_{i,j}
fi,j 为考虑前
i
i
i 个物品时总重恰好为
j
j
j 的最大价值和。
容易得到DP方程:
f
i
,
j
=
max
(
f
i
−
1
,
j
,
f
i
−
1
,
j
−
w
+
v
)
f_{i,j}=\max(f_{i-1,j},f_{i-1,j-w}+v)
fi,j=max(fi−1,j,fi−1,j−w+v)
判断01背包
思路类似,方程变为 f i , j = f i − 1 , j ∣ f i − 1 , j − w + v f_{i,j}=f_{i-1,j}\mid f_{i-1,j-w}+v fi,j=fi−1,j∣fi−1,j−w+v 即可
算法参数
- 时间复杂度: Θ ( n m ) \Theta(nm) Θ(nm)
- 空间复杂度: Θ ( n m ) \Theta(nm) Θ(nm)
滚动优化
滚动优化是动态规划中最常见的空间优化了。
容易发现在动态转移方程中有
f
i
,
j
=
max
(
f
i
−
1
,
j
,
f
i
−
1
,
j
−
w
+
v
)
f_{i,j}=\max(f_{i-1,j},f_{i-1,j-w}+v)
fi,j=max(fi−1,j,fi−1,j−w+v)
注意到第一维仅仅继承上一轮循环的状态,可以把这一维删掉。
我们注意到每次从前往后枚举
j
j
j,前面的状态已经被更新了,于是不妨倒过来循环,此时前面的数据还是上一次的结果,拿过来用即可。
算法参数
- 时间复杂度: Θ ( n m ) \Theta(nm) Θ(nm)
- 空间复杂度: Θ ( n + m ) \Theta(n+m) Θ(n+m)
实现代码
- 价值
f[0]=0;
for (int i=1;i<=n;i++)
for (int j=m;j>=w[i];j--)
f[j]=max(f[j],f[j-w[i]]+v[i]);
- 判断
f[0]=1;
for (int i=1;i<=n;i++)
for (int j=m;j>=w[i];j--)
f[j]=f[j]|f[j-w[i]];