问题:如何随机从n个对象中选择一个对象,这n个对象是按序排列的,但是在此之前你是不知道n的值的。
思路:如果我们知道n的值,那么问题就可以简单的用一个大随机数rand()%n得到一个确切的随机位置,那么该位置的对象就是所求的对象,选中的概率是1/n。
但现在我们并不知道n的值,这个问题便抽象为蓄水池抽样问题,即从一个包含n个对象的列表S中随机选取k个对象,n为一个非常大或者不知道的值。通常情况下,n是一个非常大的值,大到无法一次性把所有列表S中的对象都放到内存中。我们这个问题是蓄水池抽样问题的一个特例,即k=1。
解法:我们总是选择第一个对象,以1/2的概率选择第二个,以1/3的概率选择第三个,以此类推,以1/m的概率选择第m个对象。当该过程结束时,每一个对象具有相同的选中概率,即1/n,证明如下。
证明:第m个对象最终被选中的概率P=选择m的概率*其后面所有对象不被选择的概率,即
下面附上leetcode的代码:
class Solution {
public:
Solution(vector<int> nums) {
num=nums;
srand(int(time(0)));
}
int pick(int target) {
int cnt=0;
for(int i=0;i<num.size();i++){
if(num[i]==target){
cnt++;
if(cnt==1){
res=i;
}else if(rand()%(cnt)==0){
res=i;
}
}
}
return res;
}
private:
int res;
vector<int> num;
};