题意:大概意思是说,选定一个地点使得从该地点开始到达剩余每个地点的总长度加起来最小,找出这个点并且找出这个点所到达其他点的总长度,最后输出。
题解:两种解法:一,既可以使用spfa解法,对每个点跑出所有的最短路并进行更新,最后得出答案
附上代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
using namespace std;
const int maxn=50;
const int inf=0x3f3f3f3f;
struct edge{
int v,cost;
edge(int _v,int _cost):v(_v),cost(_cost){}
};
vector<edge>ve[maxn];
bool vis[maxn];
int dist[maxn];
int n,N,MIN,pos;
void init()
{
pos=-1;
MIN=inf;
for(int i=0;i<=n;i++){
ve[i].clear();
}
int temp=0;
for(int i=1;i<=n;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
ve[a].push_back(edge(b,c));
ve[b].push_back(edge(a,c));
temp=max(temp,a);
temp=max(temp,b);
}
N=temp;
}
void spfa(int start)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<=N;i++){
dist[i]=inf;
}
vis[start]=true;
dist[start]=0;
queue<int>que;
while(!que.empty()){
que.pop();
}
que.push(start);
while(!que.empty()){
int u=que.front();
que.pop();
vis[u]=false;
for(int i=0;i<ve[u].size();i++){
int v=ve[u][i].v;
if(dist[v]>dist[u]+ve[u][i].cost){
dist[v]=dist[u]+ve[u][i].cost;
if(!vis[v]){
vis[v]=true;
que.push(v);
}
}
}
}
}
bool update_min()
{
int sum=0;
for(int i=0;i<=N;i++){
sum+=dist[i];
}
if(sum<MIN){
MIN=sum;
return true;
}
return false;
}
int main()
{
while(scanf("%d",&n)&&n){
init();
for(int i=0;i<=N;i++){
spfa(i);
if(update_min()){
pos=i;
}
}
printf("%d %d\n",pos,MIN);
}
return 0;
}
解法二:使用floyd解法,数据量比较小
#include<iostream>
#include<cstdio>
using namespace std;
const int inf=0x3f3f3f3f;
int graph[15][15];
void init(int n)
{
for(int i=0;i<n;i++){
for(int j=0;j<i;j++){
graph[i][j]=graph[j][i]=inf;
}
graph[i][i]=0;
}
}
void floyd(int n)
{
for(int k=0;k<n;k++){
for(int i=0;i<n;i++){
for(int j=0;j<n;j++){
graph[i][j]=min(graph[i][j],graph[i][k]+graph[k][j]);
}
}
}
}
int main()
{
int n;
while(scanf("%d",&n)&&n){
init(15);
int m=0;
for(int i=0;i<n;i++){
int a,b,c;
scanf("%d%d%d",&a,&b,&c);
graph[a][b]=graph[b][a]=min(graph[a][b],c);
m=max(max(m,a),b);
}
floyd(m+1);
int ans=inf,kase=0;
for(int i=0;i<=m;i++){
int tp=0;
for(int j=0;j<=m;j++){
if(graph[i][j]!=inf){
tp+=graph[i][j];
}
}
if(tp<ans){
ans=tp;
kase=i;
}
}
printf("%d %d\n",kase,ans);
}
return 0;
}