Median POJ - 3579 (二分 有点玄学)

传送门

题意:给一串数,共n*(n-1)/2个差值,求差值从大到小排序的中值,偶数向下取.

题解:使用二分答案,然后可以先把数排序,然后下界0,上界a[n]-a[1],二分假定中值d,如果所有差值中大于等于d的小于等于N/2,说明d太大了.判断d是否可行时如果枚举差值就太慢了,可以对于每一个数x,找所有满足xi>=x+d(xi>x)的xi的个数,这里还是用二分,直接lower_bound即可.,但是我这个二分虽然过了,但是答案要减一才可以,玄了。

附上代码:


#include<iostream>
#include<cstdio>
#include<algorithm>

using namespace std;

const int maxn=1e5+50;

int n,N;
int a[maxn];

bool C(int d)
{
    int cnt=0;
    for(int i=0;i<n-1;i++){
        cnt+=a+n-(lower_bound(a+i+1,a+n,a[i]+d));
    }
    return cnt<=N/2;
}

void solve()
{
    sort(a,a+n);
    int lb=-1,ub=a[n-1]-a[0]+1;
    while(ub-lb>1){
        int mid=(lb+ub)>>1;
        if(C(mid)){
            ub=mid;
        }else{
            lb=mid;
        }
    }
    printf("%d\n",ub-1);
}

int main()
{
    while(scanf("%d",&n)!=EOF){
        N=n*(n-1)/2;
        for(int i=0;i<n;i++){
            scanf("%d",&a[i]);
        }
        solve();
    }
    return 0;
}

 

Sen-Median趋势分析方法是一种用于描述和分析时间序列数据的统计工具。它通过将数据按照位置进行排序,确定数据的中间位置,将中间位置的数据作为时间序列的趋势模型。 Sen-Median趋势分析方法主要分为以下几个步骤:首先,将时间序列数据按照时间顺序进行排序。然后,计算出各个时间点数据的斜率值,即通过计算两个数据值的差值来衡量数据的变化趋势。接下来,找到数据斜率值的中位数,作为代表数据整体趋势的中间趋势。最后,根据中间趋势值来绘制趋势线,以展示数据的整体趋势。 Sen-Median趋势分析方法具有以下几个特点:首先,它能够减轻极端值对趋势分析结果的影响,使得趋势模型更加平滑和稳定。其次,这种方法不依赖于分布假设,可以适用于不同类型的数据。第三,该方法计算简单,不需要对数据进行复杂的数学计算,比较易于理解和使用。 Sen-Median趋势分析方法在实际应用中具有广泛的应用。例如,在金融领域,可以使用该方法来分析股票价格的趋势,帮助投资者做出决策。在气象学中,可以利用该方法来研究气温变化的趋势,以预测天气情况。此外,在经济学、环境科学等领域,Sen-Median趋势分析方法也有着广泛的应用。 总之,Sen-Median趋势分析方法是一种用于揭示时间序列数据趋势的统计分析工具,它的特点是稳定、简单易懂,广泛应用于各个领域。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值