题意:给一串数,共n*(n-1)/2个差值,求差值从大到小排序的中值,偶数向下取.
题解:使用二分答案,然后可以先把数排序,然后下界0,上界a[n]-a[1],二分假定中值d,如果所有差值中大于等于d的小于等于N/2,说明d太大了.判断d是否可行时如果枚举差值就太慢了,可以对于每一个数x,找所有满足xi>=x+d(xi>x)的xi的个数,这里还是用二分,直接lower_bound即可.,但是我这个二分虽然过了,但是答案要减一才可以,玄了。
附上代码:
#include<iostream>
#include<cstdio>
#include<algorithm>
using namespace std;
const int maxn=1e5+50;
int n,N;
int a[maxn];
bool C(int d)
{
int cnt=0;
for(int i=0;i<n-1;i++){
cnt+=a+n-(lower_bound(a+i+1,a+n,a[i]+d));
}
return cnt<=N/2;
}
void solve()
{
sort(a,a+n);
int lb=-1,ub=a[n-1]-a[0]+1;
while(ub-lb>1){
int mid=(lb+ub)>>1;
if(C(mid)){
ub=mid;
}else{
lb=mid;
}
}
printf("%d\n",ub-1);
}
int main()
{
while(scanf("%d",&n)!=EOF){
N=n*(n-1)/2;
for(int i=0;i<n;i++){
scanf("%d",&a[i]);
}
solve();
}
return 0;
}