在人工智能迅猛发展的今天,大模型(如DeepSeek、文心一言、Claude等)已经成为各行各业创新的核心动力。作为开发者或产品经理,你是否也想快速接入这些强大的AI能力,却被繁琐的API申请流程和调用细节搞得头疼?别担心,今天我就带你从零开始,系统讲解大模型API的申请方法和实战调用技巧,一键助你轻松玩转AI接口!
文章目录
一、大模型API到底是什么?为什么你必须了解它?
先来聊聊什么是大模型API。简单来说,大模型API就是通过网络接口,允许你调用云端部署的超大规模人工智能模型的能力。你不需要自己训练模型,也不用担心硬件资源,只要通过API发送请求,就能获得智能文本生成、语义理解、翻译、问答等多种功能。
大模型API的三大核心优势🔥
-
远程调用,省时省力
你无需搭建复杂的AI训练环境,只要有网络,就能调用云端模型。 -
功能丰富,覆盖多场景
从智能客服、内容创作,到代码生成、数据分析,API都能帮你实现。 -
高效便捷,快速集成
标准化接口设计,让你几行代码就能接入,极大提升开发效率。
二、主流大模型API一览及申请解析
市场上大模型API琳琅满目,选择合适的API是第一步。下面我帮你梳理几款主流大模型API及其申请要点。
大模型名称 | 代表厂商 | 主要功能 | 申请难度 | 适用场景 |
---|---|---|---|---|
ChatGPT API | OpenAI | 文本生成、对话、代码辅助 | 中等 | 聊天机器人、内容创作 |
文心一言API | 百度 | 中文理解、生成、翻译 | 简单 | 中文应用、智能客服 |
Claude API | Anthropic | 安全对话、文本生成 | 中等 | 企业级对话系统 |
GPT-4 API | OpenAI | 高级文本理解与生成 | 较难 | 复杂文本处理、专业领域 |
等等… | … | … | … | … |
AI大模型发展至今,已经有100多个模型。那么我们该如何选择呢?如果一个一个去申请,我们将会费时又费力。所以下一步就教你如何一键申请146个大模型的API接口
三、146个大模型API调用实战:从零到一的完整流程
步骤1:访问能用AI API工具
在浏览器中打开能用AI API进入主页
https://ai.nengyongai.cn/register?aff=PEeJ
步骤2:生成新的API Key
- 点击“添加令牌”按钮。
. 创建成功后,点击“查看KEY”按钮,获取你的API Key。
步骤3:使用OpenAI API的实战教程
拥有了API Key后,接下来就是如何在你的项目中调用OpenAI API了。以下以Python为例,详细展示如何进行调用。
1.可以调用的模型
2.Python示例代码(基础)
基本使用:直接调用,没有设置系统提示词的代码
from openai import OpenAI
client = OpenAI(
api_key="这里是能用AI API的模型名称",
base_url="https://ai.nengyongai.cn/v1"
)
response = client.chat.completions.create(
messages=[
# 把用户提示词传进来content
{'role': 'user', 'content': "鲁迅为什么打周树人?"},
],
model='gpt-4', # 上面写了可以调用的模型
stream=True # 一定要设置True
)
for chunk in response:
print(chunk.choices[0].delta.content, end="", flush=True)
在这里插入代码片
3.Python示例代码(高阶)
进阶代码:根据用户反馈的问题,用GPT进行问题分类
from openai import OpenAI
# 创建OpenAI客户端
client = OpenAI(
api_key="这里是能用AI API的模型名称",
base_url="https://ai.nengyongai.cn/v1"
)
def api(content):
print()
# 这里是系统提示词
sysContent = f"请对下面的内容进行分类,并且描述出对应分类的理由。你只需要根据用户的内容输出下面几种类型:bug类型,用户体验问题,用户吐槽." \
f"输出格式:[类型]-[问题:{content}]-[分析的理由]"
response = client.chat.completions.create(
messages=[
# 把系统提示词传进来sysContent
{'role': 'system', 'content': sysContent},
# 把用户提示词传进来content
{'role': 'user', 'content': content},
],
# 这是模型
model='gpt-4', # 上面写了可以调用的模型
stream=True
)
for chunk in response:
print(chunk.choices[0].delta.content, end="", flush=True)
if __name__ == '__main__':
content = "这个页面不太好看"
api(content)
通过这段代码,你可以轻松地与OpenAI GPT-4.0模型进行交互,获取所需的文本内容。✨
更多文章
【IDER、PyCharm】免费AI编程工具完整教程:ChatGPT Free - Support Key call AI GPT-o1 Claude3.5