Swin_Unet & Trans_UNet & Unet & Deeplabv3网络推理时间对比

本文对比了不同深度学习网络模型在推理时间上的表现,包括使用Vgg作为主干的UNet、纯UNet、引入注意力机制的Swin_Unet、基于mobilenet/xception的DeepLabv3以及Trans_UNet。实验结果显示,各模型在不同图片尺寸下,推理时间从0.2s到0.6s不等,表明模型复杂度对推理速度有显著影响。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1、Unet网络推理:用Vgg网络作为主干网络
电脑路径:在这里插入图片描述
libtorch Gpu,图片大小需要改为640 *640,推理时间为:训练时间结果为:
在这里插入图片描述
2、Unet网络推理:用Unet本身网络
电脑路径:在这里插入图片描述
图片大小需要改为640 *640,推理时间为:0.2s在这里插入图片描述
3、Swin_Unet网络推理:利用注意力机制
电脑路径:

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

胖子工作室

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值