Deep-Live-Cam 直播、会议实时换脸程序本地安装部署指南

简介

Deep-Live-Cam 是一款强大的人工智能视频处理工具,可以实现实时换脸等高级功能。本指南将帮助您在本地环境中安装和配置 Deep-Live-Cam。

效果预览

Deep-Live-Cam 可以实现多种视觉效果,包括:

  • 将自己变成心仪明星的样子
  • 模拟成为富豪的外表
  • 变身为流行文化中的角色(如孙悟空)
    想成为你心仪明星,并非难事。
    成为首富亦可。
    紧跟潮流-悟空。

安装步骤

1. 前置环境准备

1.1 安装 Anaconda

为避免 Python 版本冲突,我们需要使用 Anaconda 来管理 Python 环境。

安装参考: Anaconda 安装教程

1.2 安装 FFmpeg

FFmpeg 是处理音视频所必需的工具。

安装步骤:

  1. 以管理员身份打开 PowerShell
  2. 运行以下命令:
    iex (irm ffmpeg.tc.ht)
    

注: 如果遇到权限问题,可能需要调整 PowerShell 的执行策略。

1.3 安装 Visual Studio Build Tools
  1. 下载并安装 Visual Studio 2022 Build Tools
  2. 在安装过程中,选择 “Desktop development with C++”
    在这里插入图片描述
1.4 安装 CUDA
  1. 下载并安装 cuda_11.8.0_522.06_windows.exe
  2. 安装完成后,将以下路径添加到系统环境变量:
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\bin
    • C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8\libnvvp
1.5 安装 cuDNN
  1. NVIDIA cuDNN 档案 下载适合的版本
  2. 解压下载的文件,并将内容复制到 CUDA 安装目录(通常是 C:\Program Files\NVIDIA GPU Computing Toolkit\CUDA\v11.8)

2. 下载 Deep-Live-Cam

  1. 克隆 GitHub 仓库:
    git clone https://github.com/hacksider/Deep-Live-Cam.git
    
  2. 解压下载的文件

3. 下载必要模型

将下载的模型文件放置在 Deep-Live-Cam 的 models 目录下。

4. 创建并激活虚拟环境

conda create --name python310 python=3.10.0
conda activate python310

5. 安装依赖

  1. 下载 PyTorch:

    pip install https://download.pytorch.org/whl/cu118/torch-2.0.1%2Bcu118-cp310-cp310-win_amd64.whl
    
  2. 安装其他依赖:

    pip install -r requirements.txt
    
  3. 安装 ONNX Runtime:

    • 对于 NVIDIA 显卡:
      pip uninstall onnxruntime onnxruntime-gpu
      pip install onnxruntime-gpu==1.16.3
      
    • 对于 AMD 显卡:
      pip uninstall onnxruntime onnxruntime-directml
      pip install onnxruntime-directml==1.15.1
      

6. 启动 Deep-Live-Cam

  • 对于 NVIDIA 显卡:

    python run.py --execution-provider cuda
    
  • 对于 AMD 显卡:

    python run.py --execution-provider directml
    

手动补安装

因为直接 requements.txt 安装过程会有问题,所以可以逐个手动安装报错的
D:\workspace\software\Deep-Live-Cam-libs 改成你的存放目录

pip install D:\workspace\software\Deep-Live-Cam-libs\tb_nightly-2.18.0a20240902-py3-none-any.whl
pip install D:\workspace\software\Deep-Live-Cam-libs\gfpgan-1.3.8-py3-none-any.whl
pip install numpy==1.26.4
pip install gfpgan==1.3.8
pip install tensorflow==2.17.0
pip install tensorflow-intel==2.17.0

注意事项

  1. pip安装时若遇冲突,需逐个安装并调整版本。
  2. 依次执行pip install,如有冲突需手动解决。
  3. 无法在线安装时,请官网下载手动安装。来源: https://pypi.org/

常见问题解决

  1. Frame processor face_enhancer not found

    pip uninstall basicsr -y
    pip install git+https://github.com/xinntao/BasicSR.git@master
    
  2. ONNX Runtime 版本问题
    参考上述安装步骤中的 ONNX Runtime 安装指令。

pip uninstall onnxruntime onnxruntime-gpu
pip install onnxruntime-gpu==1.16.3
  1. CUDA 相关问题
    确保 CUDA 和 cuDNN 正确安装且版本匹配。
RuntimeError: D:\a\_work\1\s\onnxruntime\python\onnxruntime_pybind_state.cc:743 onnxruntime::python::CreateExecutionProviderInstance CUDA_PATH is set but CUDA wasn't able to be loaded. Please install the correct version of CUDA and cuDNN as mentioned in the GPU requirements page (https://onnxruntime.ai/docs/execution-providers/CUDA-ExecutionProvider.html#requirements), make sure they're in the PATH, and that your GPU is supported.
  1. 下载问题
    某些文件可能需要从 GitHub 下载,这可能会很慢。请耐心等待或考虑使用代理。
  2. vs Builtools 问题
    如果运行出现下面问题,是因为上面的 vs_tool 安装选择错误了,重新安装选择一次即可.
C:\Users\888\AppData\Local\Temp\pip-install-myqe163n\insightface_e0c711cabe7a460e817e7d0bc2e1a0cc\insightface\thirdparty\face3d\mesh\cython\mesh_core.h(4): fatal error C1083: 无法打开包括文件: “stdio.h”: No such file or directory
      error: command 'C:\\Program Files (x86)\\Microsoft Visual Studio\\2022\\BuildTools\\VC\\Tools\\MSVC\\14.41.34120\\bin\\HostX86\\x64\\cl.exe' failed with exit code 2
  1. AMD显卡
    如果有下面错误,可能你电脑的是 AMD 显卡,使用 AMD 显卡启动命令
    sess.initialize_session(providers, provider_options, disabled_optimizers)
RuntimeError: D:\a\_work\1\s\onnxruntime\core\providers\cuda\cuda_call.cc:121 onnxruntime::CudaCall D:\a\_work\1\s\onnxruntime\core\providers\cuda\cuda_call.cc:114 onnxruntime::CudaCall CUDA failure 35: CUDA driver version is insufficient for CUDA runtime version ; GPU=1328509528 ; hostname=5T5 ; file=D:\a\_work\1\s\onnxruntime\core\providers\cuda\cuda_execution_provider.cc ; line=236 ; expr=cudaSetDevice(info_.device_id);

文件打包下载

为了确保您能够顺畅地进行后续操作,我们特此提供了一个精心整理的大文件打包下载链接。该压缩包内包含了您所需的所有文件,您可一键获取,亦可选择单独下载。
请点击以下链接,开启您的便捷之旅:
链接:https://pan.quark.cn/s/a1b102c72964
提取码:G1FT
在这里插入图片描述

免责声明

Deep-Live-Cam 旨在为人工智能生成媒体行业做出积极贡献。用户应负责任地使用本软件,遵守当地法律,并在使用真人面孔时获得相关人员的同意。本软件开发者不对最终用户的行为负责。

注: 请确保您的使用符合道德和法律标准。

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值