吴恩达机器学习(六)神经网络(前向传播)

目录

0. 前言

1. 神经网络模型

2. 前向传播(forward propagation)

3. 神经网络中的多分类


学习完吴恩达老师机器学习课程的神经网络,简单的做个笔记。文中部分描述属于个人消化后的理解,仅供参考。

如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~

0. 前言

神经网络(Neural Network),是通过模拟生物大脑的突触神经传播电信号的一系列过程,来模拟生物思考,进而解决分类问题,通常,神经网络可以用来解决一些非线性的问题。

  • 输入层(input layer):输入 x
  • 隐藏层(hidden layer):对输入层作一系列“处理”,“处理”通常由系数的运算和激活函数组成,隐藏层可以有多层
  • 输出层(output layer):接受隐藏层的输出,再进行一系列处理,最终输出

给出符号的初始定义:

  • \theta^{(j)} --- 第 j 层到第 j+1 层之间的权重矩阵
  • z_{i}^{(j)} --- 为第 j 层的第 i 个激活单元所计算的值
  • a_{i}^{(j)} --- 第 j 层的第 i 个激活单元

1. 神经网络模型

简单神经网络模型如下所示(图源:吴恩达机器学习,更改后)。Layer1为输入层,Layer2为隐藏层,Layer3为输出层。

隐藏层中的每一个激活单元,都使用了来自输入层的每一个单元的数值;输出层中的每一个激活单元,都使用了来自隐藏层中的每一个单元的数值。

注:x_{0}\ a_{0}^{(2)} 是偏置单元(bias unit),为一常数,不接收前一层的输入。

这里 x_{i} 可以看作是 a_{i}^{(1)} ,为第一层(输入层)的激活单元。

2. 前向传播(forward propagation)

对于隐藏层和输出层的激活单元的计算,我们可给出如下计算公式,其中 g(z) 仍然表示 sigmoid 函数:

\large \begin{align*} a_{1}^{(2)} &= g(z_{1}^{(2)})= g(\theta_{10}^{(1)}x_{0}+\theta_{11}^{(1)}x_{1}+\theta_{12}^{(1)}x_{2}+\theta_{13}^{(1)}x_{3})\\ a_{2}^{(2)} &= g(z_{2}^{(2)})= g(\theta_{20}^{(1)}x_{0}+\theta_{21}^{(1)}x_{1}+\theta_{22}^{(1)}x_{2}+\theta_{23}^{(1)}x_{3})\\ a_{3}^{(2)} &= g(z_{3}^{(2)})= g(\theta_{30}^{(1)}x_{0}+\theta_{31}^{(1)}x_{1}+\theta_{32}^{(1)}x_{2}+\theta_{33}^{(1)}x_{3}) \end{align*}

\large h_{\theta}(x)=a^{(3)}=g(z^{(3)})= g(\theta_{10}^{(2)}a_{0}^{(2)}+\theta_{11}^{(2)}a_{1}^{(2)}+\theta_{12}^{(2)}a_{2}^{(2)}+\theta_{13}^{(2)}a_{3}^{(2)})

简单来说,这一层的每一个激活单元,都需要由上一层的每一个激活单元乘以一个系数再求和,包裹一个激活函数(此处为 sigmoid 函数)得到,然后为这一层增加一个偏置单元,继续进行下一层的计算。这种由输入层,逐渐向后计算,计算到输出层的方式,称为前向传播(forward propagation)。

同样,我们可以将其向量化,x= \begin{bmatrix} x_{0}\\ x_{1}\\ x_{2}\\ x_{3} \end{bmatrix} ,\theta^{(j)}= \begin{bmatrix} \theta_{10}^{(j)} &\theta_{11}^{(j)} &\theta_{12}^{(j)} &\theta_{13}^{(j)} \\ \theta_{20}^{(j)} &\theta_{21}^{(j)} &\theta_{22}^{(j)} &\theta_{23}^{(j)} \\ \theta_{30}^{(j)} &\theta_{31}^{(j)} &\theta_{32}^{(j)} &\theta_{33}^{(j)} \end{bmatrix} ,z^{(j)}= \begin{bmatrix} z_{1}^{(j)}\\ z_{2}^{(j)}\\ z_{3}^{(j)} \end{bmatrix} ,a^{(j)}= \begin{bmatrix} a_{0}^{(j)}\\ a_{1}^{(j)}\\ a_{2}^{(j)}\\ a_{3}^{(j)} \end{bmatrix} ,给出公式如下:

\large \begin{align*} z^{(2)} &= \theta^{(1)}x = \theta^{(1)}a^{(1)}\\ a^{(2)} &= g(z^{(2)})\\ Add& \ a_{0}^{(2)}=1 \\ z^{(3)} &= \theta^{(2)}a^{(2)}\\ h_{\theta}(x) &= a^{(3)}=g(z^{(3)}) \end{align*}

其中,\theta^{(j)} 的维度为 s_{j+1}\times(s_{j}+1)s_{j} 表示第 j 层的单元数量(不包括偏置单元)。

一般化,可得以下公式:

\large \begin{align*} z^{(j)} &= \theta^{(j-1)}a^{(j-1)} \\ a^{(j)} &= g(z^{(j)})\\ Add &\ a_{0}^{(j)}=1 \\ z^{(j+1)} &= \theta^{(j)}a^{(j)} \\ &... \end{align*}

3. 神经网络中的多分类

在逻辑回归中,我们已经学习得知 h_{\theta}(x)=sigmoid(\theta^{T}x) 表示分类至此类别的概率。所以,多分类由几个基分类器组成,计算每个类别的 h_{\theta}(x) ,最大的 h_{\theta}(x) 的类别即为分类结果。

同理,在神经网络中,也是运用此原理,如下图所示(图源:吴恩达机器学习):

图为一个4分类的例子,输出层不再只有一个单元,而是4个单元,每一个单元表示分类至此类别的 h_{\theta}(x),也就是概率,概率最大的即为分类结果。


如果这篇文章对你有一点小小的帮助,请给个关注喔~我会非常开心的~

 

 

 

  • 4
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值