西瓜书+实战+吴恩达机器学习(二)机器学习基础(偏差、方差、调试模型技巧)

如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~

0. 前言

泛化误差可分解为偏差、方差、噪声之和。

  • 偏差:度量了学习算法的期望预测与真实结果的偏离程度
  • 方差:度量了同样大小的数据集的变动所导致的学习性能的变化
  • 噪声:表达了在当前任务上任何学习算法所能达到的期望泛化误差下界
  • 泛化性能:由学习算法的能力、数据的充分性、学习任务本身难度所共同决定的

与偏差方差所对应的是欠拟合和过拟合。

  • 欠拟合:偏差主导了泛化错误率,学习器的拟合能力不够强,不能学习到数据的普遍特性
  • 过拟合:方差主导了泛化错误率,学习器的拟合能力过于强,甚至学习了一些数据的个性

泛化误差与偏差、方差的关系如下图所示(图源:机器学习):

1. 偏差方差的解决方法

偏差,是指模型不能很好的学习到数据的普遍特性,所谓欠拟合

  1. 使用更好的优化算法
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值