如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~
0. 前言
泛化误差可分解为偏差、方差、噪声之和。
- 偏差:度量了学习算法的期望预测与真实结果的偏离程度
- 方差:度量了同样大小的数据集的变动所导致的学习性能的变化
- 噪声:表达了在当前任务上任何学习算法所能达到的期望泛化误差下界
- 泛化性能:由学习算法的能力、数据的充分性、学习任务本身难度所共同决定的
与偏差方差所对应的是欠拟合和过拟合。
- 欠拟合:偏差主导了泛化错误率,学习器的拟合能力不够强,不能学习到数据的普遍特性
- 过拟合:方差主导了泛化错误率,学习器的拟合能力过于强,甚至学习了一些数据的个性
泛化误差与偏差、方差的关系如下图所示(图源:机器学习):
1. 偏差方差的解决方法
偏差,是指模型不能很好的学习到数据的普遍特性,所谓欠拟合:
- 使用更好的优化算法