如果这篇文章对你有一点小小的帮助,请给个关注,点个赞喔,我会非常开心的~
0. 前言
Bagging:对数据集进行有放回采样,采 m m m次构成一个新的数据集,基于这个数据集训练基学习器,如此重复采样并训练直到达到指定学习器数目,将这些学习器集成
Bagging主要关注降低方差,因此在易受样本扰动的学习器(决策树、神经网络)上效果更佳。
随机森林是Bagging的扩展变体。
1. 随机森林算法
随机森林以决策树为基学习器,在引入Bagging随机数据集的同时引入随机属性集。
具体来说,每次划分节点的时候,先从该节点中候选属性中随机选择一个包含