Handling Conditional Discrimination(可解释歧视和确切的歧视)

文章创新点在于提出了一种新的概念,可解释属性和敏感属性之间的关联导致了可能存在一些“歧视”,这种“歧视”是可以被理解和接受的,可以被忽略和剔除的。再者,剔除的方法也是论文的一大改进之处。

Dall= Dexpl+ Dbad

Dexpl:举例子,学校录取学生,假设男女生各录取20人。其中男生报名的有100人,录取20人,录取率为20%。女生报名的200人,录取20人,录取率为10%。此时,总体上看男女生录取率是存在20%-10%=10%的偏差的,可能会误以为存在对女生的歧视,歧视值为10%。但是实际上呢,是因为女生报名的人数过多造成的,学校本身是不存在歧视的,对男女的录取人数相同。只不过是该校比较吸引女生,导致女生基数过大,竞争过大。这并不是学校存在歧视。这种歧视值被认为是可解释的歧视。

上述公式可理解为所有的歧视是可以分为可解释的歧视和错误(确切的)歧视。可解释歧视出现的原因是,属性,程序和决策之间存在一些关联。针对于这种可解释歧视,是可以删除的,文中提出采用“ local massaging ”,"Local Preferential Sampling",分别是局部推拿和本地优先抽样,也是论文的主要方法。

局部massaging:由解释属性诱导的训练数据中每个分区的局部信息传递将修改标签的值,直到所修改的标签中男性和女性的比率相同,且等于平均的男性和女性可接受率(指的是男性女性之间可接受的差异值)。歧视更可能影响那些更接近决策边界的对象。消息传递标识接近决策边界的实例,并将其标签的值更改为相反的值。为此目的,需要根据个人接受的概率对其进行排序。为了进行排序,需要将原来的二进制标签(接受或拒绝)转换为接受的实值概率。为此学习了一个内部等级Hi(输出后验概率的分类器)。见算法1

可解释差异(可接受率):

本地优先抽样:优先采样技术不修改训练实例或标签,而是修改训练集的组成。它对训练实例进行删除和重复,使新训练集的标签不包含描述项,满足条件修改后男性概率=女性概率=平均男女可接受率。优先抽样删除了接近决策边界的“错误”实例,并复制了接近决策边界的“正确”实例。

并不是所有的歧视都是不好的,现有的技术往往会过度使用,从而导致反向歧视。因此,论文中引入了一种新的衡量歧视的方法,明确地将其分为可解释的歧视和不好的歧视。介绍了按摩和优先抽样的局部替代方案,并通过实验对其进行了评价。实验结果表明,该方法在敏感属性与解释属性高度相关的情况下是有效的。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值