连续时间正弦信号
时移等于相变。反过来也成立。
Time Shift <=> Phase Change
y
=
A
s
i
n
(
w
t
+
φ
)
,
其
中
,
A
是
振
幅
,
w
是
频
率
(
角
频
率
)
,
φ
是
初
相
y=Asin(wt+φ),其中,A是振幅,w是频率(角频率),φ是初相
y=Asin(wt+φ),其中,A是振幅,w是频率(角频率),φ是初相
证
明
证明
证明:
对
于
A
s
i
n
(
w
t
)
,
有
一
个
时
移
t
0
,
代
入
:
对于Asin(wt),有一个时移t_0,代入:
对于Asin(wt),有一个时移t0,代入:
A
s
i
n
(
w
(
t
+
t
0
)
)
=
A
s
i
n
(
w
t
+
w
t
0
)
,
w
t
0
这
一
项
则
可
以
看
作
是
一
个
相
变
。
(
时
移
产
生
了
相
变
)
Asin(w(t+t_0))=Asin(wt+wt_0),wt_0这一项则可以看作是一个相变。(时移产生了相变)
Asin(w(t+t0))=Asin(wt+wt0),wt0这一项则可以看作是一个相变。(时移产生了相变)
反
过
来
,
若
有
一
个
相
变
,
A
s
i
n
(
w
t
+
w
t
0
)
反过来,若有一个相变,Asin(wt+wt_0)
反过来,若有一个相变,Asin(wt+wt0)
w
t
0
就
等
于
相
变
,
把
w
提
取
出
来
,
A
s
i
n
(
w
(
t
+
t
0
)
)
,
即
相
变
对
应
一
个
时
移
。
wt_0就等于相变,把w提取出来,Asin(w(t+t_0)),即相变对应一个时移。
wt0就等于相变,把w提取出来,Asin(w(t+t0)),即相变对应一个时移。
无
论
相
变
是
多
少
,
都
能
求
出
对
应
的
时
移
无论相变是多少,都能求出对应的时移
无论相变是多少,都能求出对应的时移
离散时间正弦信号
x
[
n
]
=
A
s
i
n
(
Ω
n
+
φ
)
x[n]=Asin(Ωn+φ)
x[n]=Asin(Ωn+φ)
注意的是,自变量是一个整数变量。n只会取整数。
Time Shift => Phase Change
时移等于相变。
A
s
i
n
(
Ω
(
n
+
n
0
)
)
=
A
s
i
n
(
Ω
n
+
Ω
n
0
)
,
做
一
个
时
间
移
位
,
则
产
生
了
相
变
,
Ω
n
0
就
等
于
相
变
Asin(Ω(n+n_0))=Asin(Ωn+Ωn_0),做一个时间移位,则产生了相变,Ωn_0就等于相变
Asin(Ω(n+n0))=Asin(Ωn+Ωn0),做一个时间移位,则产生了相变,Ωn0就等于相变
但是相变不一定能产生时移。这是离散信号和连续信号的一个差别。
Ω
n
0
=
φ
,
因
此
n
0
=
φ
/
Ω
,
而
n
0
不
一
定
是
一
个
整
数
。
Ωn_0=φ,因此n_0=φ/Ω,而n_0不一定是一个整数。
Ωn0=φ,因此n0=φ/Ω,而n0不一定是一个整数。
因
此
,
当
n
0
是
整
数
时
,
相
变
能
产
生
时
移
,
若
n
0
不
是
整
数
,
则
相
变
不
能
产
生
时
移
。
因此,当n_0是整数时,相变能产生时移,若n_0不是整数,则相变不能产生时移。
因此,当n0是整数时,相变能产生时移,若n0不是整数,则相变不能产生时移。
离散的正弦信号的周期性:
x
[
n
]
=
A
s
i
n
(
Ω
n
+
φ
)
x[n]=Asin(Ωn+φ)
x[n]=Asin(Ωn+φ)
具
备
周
期
性
,
即
x
[
n
]
=
x
[
n
+
N
]
具备周期性,即x[n]=x[n+N]
具备周期性,即x[n]=x[n+N]
代
入
有
:
A
s
i
n
(
Ω
n
+
φ
)
=
A
s
i
n
[
Ω
(
n
+
N
)
+
φ
]
=
A
s
i
n
(
Ω
n
+
Ω
N
+
φ
)
代入有:Asin(Ωn+φ)=Asin[Ω(n+N)+φ]=Asin(Ωn+ΩN+φ)
代入有:Asin(Ωn+φ)=Asin[Ω(n+N)+φ]=Asin(Ωn+ΩN+φ)
根
据
三
角
函
数
的
性
质
,
左
边
要
等
于
右
边
,
则
Ω
N
=
2
π
m
,
m
为
任
意
的
整
数
根据三角函数的性质,左边要等于右边,则ΩN=2πm,m为任意的整数
根据三角函数的性质,左边要等于右边,则ΩN=2πm,m为任意的整数
因
此
,
N
=
2
π
m
/
Ω
因此,N=2πm/Ω
因此,N=2πm/Ω
但
是
对
于
离
散
信
号
来
说
,
自
变
量
是
整
数
变
量
,
因
此
N
需
要
为
整
数
但是对于离散信号来说,自变量是整数变量,因此N需要为整数
但是对于离散信号来说,自变量是整数变量,因此N需要为整数
举例:
Ω
=
2
π
/
12
Ω=2π/12
Ω=2π/12
则,
N
=
2
π
/
(
2
π
/
12
)
=
12
,
周
期
就
是
12
N=2π/(2π/12)=12,周期就是12
N=2π/(2π/12)=12,周期就是12
Ω
=
8
π
/
31
Ω=8π/31
Ω=8π/31
则,
N
=
2
π
/
(
8
π
/
31
)
=
31
/
4
,
此
时
N
不
是
一
个
整
数
,
因
此
需
要
把
N
乘
以
一
个
整
数
4
N=2π/(8π/31)=31/4,此时N不是一个整数,因此需要把N乘以一个整数4
N=2π/(8π/31)=31/4,此时N不是一个整数,因此需要把N乘以一个整数4
得
到
N
=
31
,
即
意
味
着
这
个
信
号
具
有
周
期
性
,
周
期
为
31
。
得到N=31,即意味着这个信号具有周期性,周期为31。
得到N=31,即意味着这个信号具有周期性,周期为31。
Ω
=
1
/
6
Ω=1/6
Ω=1/6
N
=
2
π
/
(
1
/
6
)
=
12
π
N=2π/(1/6)=12π
N=2π/(1/6)=12π
π
是
一
个
无
理
小
数
,
12
π
乘
以
任
何
整
数
都
不
能
得
到
一
个
整
数
,
因
此
意
味
着
这
个
信
号
不
具
有
周
期
性
。
π是一个无理小数,12π乘以任何整数都不能得到一个整数,因此意味着这个信号不具有周期性。
π是一个无理小数,12π乘以任何整数都不能得到一个整数,因此意味着这个信号不具有周期性。
然
而
,
和
这
个
信
号
一
样
的
连
续
时
间
信
号
具
有
周
期
性
(
周
期
为
12
π
)
.
然而,和这个信号一样的连续时间信号具有周期性(周期为12π).
然而,和这个信号一样的连续时间信号具有周期性(周期为12π).
因
为
连
续
时
间
信
号
的
周
期
值
是
可
以
任
意
取
值
的
。
因为连续时间信号的周期值是可以任意取值的。
因为连续时间信号的周期值是可以任意取值的。
不
一
定
非
要
整
数
。
不一定非要整数。
不一定非要整数。
总结
连续时间正弦信号和离散时间正弦信号的差别:
对于连续时间信号,时移产生相变,相变等于时移,即两者是等价的。
对于离散时间信号,时移可以产生相变,而相变不一定能够产生时移。
周期性
连续时间信号具有周期性。
A
s
i
n
(
w
t
+
φ
)
,
周
期
取
决
于
w
Asin(wt+φ),周期取决于w
Asin(wt+φ),周期取决于w
离散时间信号不一定具有周期性。
A
s
i
n
(
Ω
n
+
φ
)
,
周
期
取
决
于
N
=
2
π
m
/
Ω
,
N
要
为
整
数
Asin(Ωn+φ),周期取决于N=2πm/Ω,N要为整数
Asin(Ωn+φ),周期取决于N=2πm/Ω,N要为整数
对于两个离散时间的正弦信号:
x
1
=
A
s
i
n
(
Ω
1
n
+
φ
)
x_1=Asin(Ω_1n+φ)
x1=Asin(Ω1n+φ)
x
2
=
A
s
i
n
(
Ω
2
n
+
φ
)
x_2=Asin(Ω_2n+φ)
x2=Asin(Ω2n+φ)
频率不同,若两个频率相差为2π的整数倍,
Ω
2
=
Ω
1
+
2
π
m
Ω_2=Ω_1+2πm
Ω2=Ω1+2πm
则代入以后:
x
2
=
A
s
i
n
[
(
Ω
1
+
2
π
m
)
n
+
φ
]
=
A
s
i
n
(
Ω
1
n
+
φ
+
2
π
m
n
)
x_2=Asin[(Ω_1+2πm)n+φ]=Asin(Ω_1n+φ+2πmn)
x2=Asin[(Ω1+2πm)n+φ]=Asin(Ω1n+φ+2πmn)
因
为
m
和
n
均
是
整
数
,
根
据
三
角
函
数
性
质
,
这
一
项
取
消
因为m和n均是整数,根据三角函数性质,这一项取消
因为m和n均是整数,根据三角函数性质,这一项取消
也
就
是
说
,
频
率
相
差
2
π
的
整
数
倍
,
信
号
不
变
,
对
于
连
续
时
间
信
号
则
不
成
立
也就是说,频率相差2π的整数倍,信号不变,对于连续时间信号则不成立
也就是说,频率相差2π的整数倍,信号不变,对于连续时间信号则不成立
对于两个连续时间的正弦信号:
x
1
=
A
s
i
n
(
w
1
t
+
φ
)
x_1=Asin(w_1t+φ)
x1=Asin(w1t+φ)
x
2
=
A
s
i
n
(
w
2
t
+
φ
)
x_2=Asin(w_2t+φ)
x2=Asin(w2t+φ)
w
2
=
w
1
+
2
π
m
,
代
入
w_2=w_1+2πm,代入
w2=w1+2πm,代入
x
2
=
A
s
i
n
[
(
w
1
+
2
π
m
)
t
+
φ
]
=
A
s
i
n
(
w
1
t
+
φ
+
2
π
m
t
)
x_2=Asin[(w_1+2πm)t+φ]=Asin(w_1t+φ+2πmt)
x2=Asin[(w1+2πm)t+φ]=Asin(w1t+φ+2πmt)
由
于
t
是
连
续
变
量
,
不
一
定
为
整
数
值
,
因
此
最
后
一
项
当
t
为
非
整
数
时
,
该
项
仍
然
存
在
由于t是连续变量,不一定为整数值,因此最后一项当t为非整数时,该项仍然存在
由于t是连续变量,不一定为整数值,因此最后一项当t为非整数时,该项仍然存在
也
就
是
意
味
着
,
对
于
连
续
时
间
信
号
,
频
率
相
差
2
π
的
整
数
倍
,
信
号
不
一
致
也就是意味着,对于连续时间信号,频率相差2π的整数倍,信号不一致
也就是意味着,对于连续时间信号,频率相差2π的整数倍,信号不一致