极限

引言

在微积分中,
微分,指的是 Δ x \Delta x Δx无限接近0时,微小的矩形面积。
在这里插入图片描述
积分,指的是把无数这样微小矩形的面积加起来,以得到曲线下面积:
在这里插入图片描述
补充:
“微分”是对“差分”的近似,以“直”代“曲”(“微分”就是“直”,“差分”就是“曲”),也叫做线性近似: 微 分 ≈ 差 分 微分 \approx 差分
可以参考这篇文章:
微分是什么?

但是,问题在于,在定义什么是“ Δ x \Delta x Δx无限接近0”时,遇到了困难:
在这里插入图片描述
Δ x \Delta x Δx无限接近于0,但 Δ x ≠ 0 \Delta x\ne 0 Δx̸=0, 否则以0为底边长的矩形面积为0,无穷多个0相加仍然为0。
Δ x \Delta x Δx无限接近于0,又必须最接近0, 不可能有什么实数比 Δ x \Delta x Δx更接近于0。
Δ x \Delta x Δx最接近于0,所以 Δ x \Delta x Δx一定不能为实数,否则 Δ x 2 \displaystyle\frac{\Delta x}{2} 2Δx就会比 Δ x \Delta x Δx更接近于0。

等到“极限”的出现,才真正解决这个问题。

极限

极限概念是由于求某些实际问题的精确解答而产生的。

数列极限

利用圆内接正多边形来推算圆面积的方法——割圆术。
设有一圆,首先作内接正六边形,把它的面积记为 A 1 A_1 A1
在作内接正十二边形,其面积记为 A 2 A_2 A2
再作内接正二十四边形,其面积记为 A 3 A_3 A3
循此下去,每次边数加倍
一般地把内接正 6 × 2 n − 1 6\times2^{n-1} 6×2n1 边形的面积记为 A n A_n An n ∈ N + n \in N^+ nN+),这样,就得到一系列内接正多边形的面积:
A 1 , A 2 , A 3 , . . . A n , . . . A_1,A_2,A_3,...A_n,... A1A2A3...An...
它们构成一列有次序的数。当n越大,内接正多边形与圆的差别越小,从而以 A n A_n An作为圆面积的近似值也越精确。但是无论n取得如何大,只要n取定了, A n A_n An终究只是多边形的面积,而还不是圆的面积。
因此,
设想n无限增大( n → ∞ n\rightarrow \infty n),即内接正多边形的边数无限增加,在这个过程中,内接正多边形无限接近于圆,同时 A n A_n An也无限接近于某一确定的数值,这个确定的数值就理解为圆的面积。
这个确定的数值在数学上称为有次序的数 A 1 , A 2 , A 3 , . . . A n , . . . A_1,A_2,A_3,...A_n,... A1A2A3...An...,当 n → ∞ n \rightarrow \infty n时的极限。

因此,引出数列的概念:
如果按照某一法则,对每个 n ∈ N + n \in N^+ nN+,对应着一个确定的实数 x n x_n xn,这些实数 x n x_n xn 按照下标n从小到大排列得到的一个序列
x 1 , x 2 , x 3 , . . . x n , . . . x_1,x_2,x_3,...x_n,... x1x2x3...xn...
就叫做数列,简记为数列 { x n } \{x_n\} {xn}

数列中的每一个数叫做数列的项,第n项 x n x_n xn叫做数列的一般项。
例:
1 2 , 2 3 , 3 4 , . . . , n n + 1 , . . . \frac{1}{2},\frac{2}{3},\frac{3}{4},...,\frac{n}{n+1},... 213243...n+1n...
n n + 1 \frac{n}{n+1} n+1n就是数列的一般项。

数列 { x n } \{x_n\} {xn}可看作自变量为正整数n的函数:
x n = f ( n ) , n ∈ N + x_n = f(n),n \in N^+ xn=f(n)nN+
当自变量依次取1,2,3,…等一切正整数时,对应的函数值就排列成数列 { x n } \{x_n\} {xn}

Problem?
对于要讨论的问题来说,重要的是:当n无限增大时(即 n → ∞ n \rightarrow \infty n时),对应的 x n = f ( n ) x_n = f(n) xn=f(n) 是否能无限接近于某个确定的数值?

例:
对数列
2 , 1 2 , 4 3 , . . . , n + ( − 1 ) n − 1 n , . . . 2,\frac{1}{2},\frac{4}{3},...,\frac{n+(-1)^{n-1}}{n},... 22134...nn+(1)n1...
进行分析,在数列中,
x n = n + ( − 1 ) n − 1 n = 1 + ( − 1 ) n − 1 1 n x_n = \frac{n+(-1)^{n-1}}{n} = 1 + (-1)^{n-1}\frac{1}{n} xn=nn+(1)n1=1+(1)n1n1
两个数 a a a b b b之间的接近程度可以用这两个数之差的绝对值 ∣ b − a ∣ |b-a| ba来度量,(在数轴上, ∣ b − a ∣ |b-a| ba表示点a与点b之间的距离)
∣ b − a ∣ |b-a| ba越小,a与b就越接近。

就该数列来说,因为
∣ x n − 1 ∣ = ∣ ( − 1 ) n − 1 1 n ∣ = 1 n |x_n - 1| = |(-1)^{n-1}\frac{1}{n}| = \frac{1}{n} xn1=(1)n1n1=n1
由此可见,当n越来越大时, 1 n \frac{1}{n} n1越来越小,从而 x n x_n xn越来越接近于1。
因为只要n足够大, ∣ x n − 1 ∣ |x_n-1| xn1 1 n \frac{1}{n} n1可以小于任意给定的正数。
所以说,当n无限增大时, x n x_n xn无限接近于1。

例如,给定 1 100 \frac{1}{100} 1001,欲使 1 n \frac{1}{n} n1小于 1 100 \frac{1}{100} 1001,只要n>100,即从第101项起,都能使不等式
∣ x n − 1 ∣ &lt; 1 100 |x_n-1|&lt;\frac{1}{100} xn1<1001
成立。同样的,如果给定 1 10000 \frac{1}{10000} 100001,则从第10001项起,都能使不等式
∣ x n − 1 ∣ &lt; 1 10000 |x_n-1|&lt;\frac{1}{10000} xn1<100001
成立。一般的,不论给定的正数 ϵ \epsilon ϵ 多么小,总存在着一个正整数N,使得当 n &gt; N n&gt;N n>N时,不等式
∣ x n − 1 ∣ &lt; ϵ |x_n-1|&lt;\epsilon xn1<ϵ
都成立。这就是数列 x n = n + ( − 1 ) n − 1 n ( n = 1 , 2 , 3... ) x_n = \frac{n+(-1)^{n-1}}{n}(n=1,2,3...) xn=nn+(1)n1n=1,2,3... n → ∞ n \rightarrow \infty n时无限接近于1这件事的实质
这样的一个数1,叫做数列 x n = n + ( − 1 ) n − 1 n ( n = 1 , 2 , 3... ) x_n = \frac{n+(-1)^{n-1}}{n}(n=1,2,3...) xn=nn+(1)n1n=1,2,3... n → ∞ n \rightarrow \infty n时的极限。

定义

{ x n } \{x_n\} {xn}为一数列,如果存在常数a,对于任意给定的正数 ϵ \epsilon ϵ(不论它多么小),总存在正整数N,使得当n>N时,不等式 ∣ x n − a ∣ &lt; ϵ |x_n - a| &lt; \epsilon xna<ϵ都成立,那么就称常数a是数列 { x n } \{x_n\} {xn}的极限,或者称数列 { x n } \{x_n\} {xn}收敛于a,记为 lim ⁡ n → ∞ x { n } = a \lim_{n \rightarrow \infty} x\{n\} = a nlimx{n}=a

如果不存在这样的常数a,就说数列 { x n } \{x_n\} {xn}没有极限,或者说数列 { x n } \{x_n\} {xn}是发散的。(也就是极限不存在)
上面定义中,正数 ϵ \epsilon ϵ可以任意给定是很重要的,因为只有这样,不等式 ∣ x n − a ∣ &lt; ϵ |x_n - a| &lt; \epsilon xna<ϵ才能表达出 x n x_n xn a a a无限接近的意思。
另外,定义中的正整数N是与任意给定的正数 ϵ \epsilon ϵ有关的,它随着 ϵ \epsilon ϵ的给定而选定。
无穷数列的有极限并不是要求数列中所有项都是单调的向极限值靠拢的

函数极限

对于数列极限,自变量的变化过程是:n取正整数且无限增大。( n → ∞ n \rightarrow \infty n
把这种特殊性撇开,可以引出函数极限的一般概念:
自变量的某个变化过程中,如果对应的函数值无限接近于某个确定的数,那么这个确定的数就叫做在这一变化过程中函数的极限。这个极限是与自变量过程密切相关的。
把自变量的变化过程分为两种情形:
(1)自变量 x x x任意的接近于有限值 x 0 x_0 x0或者说趋于有限值 x 0 x_0 x0,对应的函数值 f ( x ) f(x) f(x)的变化情形;
(2)自变量 x x x的绝对值 ∣ x ∣ |x| x无限增大即趋于无穷大时,对应的函数值 f ( x ) f(x) f(x)的变化情形;(数列极限就是此种情形)

自变量趋于有限值时函数的极限
x → x 0 x \rightarrow x_0 xx0 的过程中,对应的函数值 f ( x ) f(x) f(x) 无限接近于A,就是 ∣ f ( x ) − A ∣ |f(x) - A| f(x)A 能任意小。
如数列极限所述, ∣ f ( x ) − A ∣ |f(x) - A| f(x)A 能任意小这件事可以用 ∣ f ( x ) − A ∣ &lt; ϵ |f(x) - A| &lt; \epsilon f(x)A<ϵ 来表达,其中 ϵ \epsilon ϵ 是任意给定的正数。
因为函数值 f ( x ) f(x) f(x) 无限接近于A是在 x → x 0 x \rightarrow x_0 xx0 的过程中实现的,所以对于任意给定的正数 ϵ \epsilon ϵ只要求充分接近于 x 0 x_0 x0 x x x所对应的函数值 f ( x ) f(x) f(x) 满足不等式 ∣ f ( x ) − A ∣ &lt; ϵ |f(x) - A| &lt; \epsilon f(x)A<ϵ;而充分接近于 x 0 x_0 x0 x x x可表达为 0 &lt; ∣ x − x 0 ∣ &lt; δ 0&lt;|x-x_0|&lt;\delta 0<xx0<δ,其中 δ \delta δ是某个正数。从几何上看,适合不等式 0 &lt; ∣ x − x 0 ∣ &lt; δ 0&lt;|x-x_0|&lt;\delta 0<xx0<δ x x x全体,就是点 x 0 x_0 x0的去心 δ \delta δ领域,而领域半径 δ \delta δ则体现了 x x x 接近于 x 0 x_0 x0 的程度。

通过以上分析,给出 x → x 0 x \rightarrow x_0 xx0 时函数的极限的定义:

设函数 f ( x ) f(x) f(x)在点 x 0 x_0 x0的某一去心领域内有定义。如果存在常数A,对于任意给定的正数 ϵ \epsilon ϵ(不论它多么小),总存在正数 δ \delta δ,使得当 x x x满足不等式 0 &lt; ∣ x − x 0 ∣ &lt; δ 0&lt;|x-x_0|&lt;\delta 0<xx0<δ时,对应的函数值 f ( x ) f(x) f(x)都满足不等式 ∣ f ( x ) − A ∣ &lt; ϵ , |f(x)-A|&lt;\epsilon, f(x)A<ϵ, 那么常数A就叫做函数 f ( x ) f(x) f(x) x → x 0 x \rightarrow x_0 xx0时的极限,记作 lim ⁡ x → x 0 f ( x ) = A \lim_{x \rightarrow x_0} f(x) = A xx0limf(x)=A

上述定义可简单的表达为: lim ⁡ x → x 0 f ( x ) = A ⟺ ∀ ϵ &gt; 0 , ∃ δ &gt; 0 , 当 0 &lt; ∣ x − x 0 ∣ &lt; δ 时 , 有 ∣ f ( x ) − A ∣ &lt; ϵ \lim_{x \rightarrow x_0}f(x)=A \Longleftrightarrow \forall \epsilon&gt;0,\exists \delta &gt; 0,当 0 &lt; |x - x_0| &lt; \delta时,有 |f(x) - A| &lt; \epsilon limxx0f(x)=Aϵ>0δ>00<xx0<δf(x)A<ϵ

给出 x → ∞ x \rightarrow \infty x 时函数的极限的定义:

设函数 f ( x ) f(x) f(x) ∣ x ∣ |x| x大于某一正数时有定义。如果存在常数A,对于任意给定的正数 ϵ \epsilon ϵ(不论它多么小),总存在着正数X,使得当 x x x满足不等式 ∣ x ∣ &gt; X |x|&gt;X x>X时,对应的函数值都满足不等式 ∣ f ( x ) − A ∣ &lt; ϵ , |f(x)-A|&lt;\epsilon, f(x)A<ϵ那么常数A就叫做函数 f ( x ) f(x) f(x) x → ∞ x \rightarrow \infty x时的极限,记作 lim ⁡ x → ∞ f ( x ) = A \lim_{x \rightarrow \infty} f(x) = A xlimf(x)=A

上述定义可简单的表达为: lim ⁡ x → ∞ f ( x ) = A ⟺ ∀ ϵ &gt; 0 , ∃ X &gt; 0 , 当 ∣ x ∣ &gt; X 时 , 有 ∣ f ( x ) − A ∣ &lt; ϵ \lim_{x \rightarrow \infty}f(x)=A \Longleftrightarrow \forall \epsilon&gt;0,\exists X&gt; 0,当 |x| &gt; X时,有 |f(x) - A| &lt; \epsilon limxf(x)=Aϵ>0X>0x>Xf(x)A<ϵ

补充一条定理

在自变量的同一变化过程 x → x 0 x \rightarrow x_0 xx0(或 x → ∞ x \rightarrow \infty x)中,函数 f ( x ) f(x) f(x)具有极限A的充分必要条件是 f ( x ) = A + α , f(x)=A+\alpha, f(x)=A+α,其中, α \alpha α是无穷小。

总结:

数列极限是用 ϵ − N \epsilon - N ϵN 语言描述。
函数极限是用 ϵ − δ \epsilon - \delta ϵδ 语言描述。

ϵ \epsilon ϵ f ( x ) f(x) f(x)无限接近常数A的描述。
δ \delta δ x x x无限接近点 x 0 x_0 x0的描述。

在自变量的变化过程中,对应的函数值越来越逼近于一个值

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值