自然语言处理之话题建模:Gibbs Sampling:主题模型的评估方法
自然语言处理与话题建模基础
话题建模的定义与应用
话题建模是一种统计建模技术,用于发现文档集合或语料库中隐藏的主题结构。它假设文档由多个话题组成,每个话题由一组相关的词汇构成。话题建模在信息检索、文本挖掘、自然语言处理等领域有广泛应用,例如:
- 文档分类:基于文档的主题分布进行分类。
- 信息检索:通过识别查询和文档的主题来提高检索的准确性。
- 文本摘要:根据文档的主题生成摘要。
- 推荐系统:基于用户对特定话题的兴趣推荐相关文档或产品。
LDA模型的基本原理与结构
LDA模型定义
LDA(Latent Dirichlet Allocation)模型是一种混合多项