棋盘挑战

这篇博客探讨了一种使用深度优先搜索(DFS)解决N×N棋盘上放置N个棋子的问题,要求每行每列以及对角线上至多只有一个棋子。通过两个一维数组作为辅助标记对角线状态,博主给出了一段C++代码实现,并展示了部分解决方案。文章还介绍了如何统计所有可能的放置方案,并输出前三个字典序最小的方案和总的方案数量。
摘要由CSDN通过智能技术生成

给定一个 N×N 的棋盘,请你在上面放置 N 个棋子,要求满足:

每行每列都恰好有一个棋子
每条对角线上都最多只能有一个棋子
1 2 3 4 5 6

1 | | O | | | | |

2 | | | | O | | |

3 | | | | | | O |

4 | O | | | | | |

5 | | | O | | | |

6 | | | | | O | |

上图给出了当 N=6 时的一种解决方案,该方案可用序列 2 4 6 1 3 5 来描述,该序列按顺序给出了从第一行到第六行,每一行摆放的棋子所在的列的位置。

请你编写一个程序,给定一个 N×N 的棋盘以及 N 个棋子,请你找出所有满足上述条件的棋子放置方案。

输入格式
共一行,一个整数 N。

输出格式
共四行,前三行每行输出一个整数序列,用来描述一种可行放置方案,序列中的第 i 个数表示第 i 行的棋子应该摆放的列的位置。

这三行描述的方案应该是整数序列字典序排在第一、第二、第三的方案。

第四行输出一个整数,表示可行放置方案的总数。

数据范围
6≤N≤13
输入样例:
6
输出样例:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4

利用两个一维数组,可以起到标记对角线的作用,因为在左下对角线中,往下一行走,它的行值加一,它的列值减一,所以它的行值加上它的列值是不变的。在右下对角线中,往下一行走,它的行值加一,但是n-i(行值),是减一的,因为(n-i)加上列值是不变的

#include <iostream>
using namespace std;
int arr[20];
int book1[20];
int book2[500];
int book3[500];
int n;
int sum;
void dfs(int step)
{
    if (step == n+1)
    {
        sum++;
        if (sum <= 3)
        {
            for (int i = 1; i <= n; i++)
            {
                cout << arr[i]<<' ';
            }
            cout << endl;
        }
        return;
    }
    for (int i = 1; i <= n; i++)
    {   //根据上面分析,book2和book3分别标记对角线
        if (book1[i] == 0 && book2[step + i] == 0 && book3[n - step + i] == 0)
        {
            arr[step] = i;
            book1[i] = 1, book2[step + i] = 1, book3[n - step + i] = 1;
            dfs(step + 1);
            book1[i] = 0, book2[step + i] = 0, book3[n - step + i] = 0;
        }
    }
}
int main(void)
{
    cin >> n;
    dfs(1);
    cout << sum;
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值