给定一个 N×N 的棋盘,请你在上面放置 N 个棋子,要求满足:
每行每列都恰好有一个棋子
每条对角线上都最多只能有一个棋子
1 2 3 4 5 6
1 | | O | | | | |
2 | | | | O | | |
3 | | | | | | O |
4 | O | | | | | |
5 | | | O | | | |
6 | | | | | O | |
上图给出了当 N=6 时的一种解决方案,该方案可用序列 2 4 6 1 3 5 来描述,该序列按顺序给出了从第一行到第六行,每一行摆放的棋子所在的列的位置。
请你编写一个程序,给定一个 N×N 的棋盘以及 N 个棋子,请你找出所有满足上述条件的棋子放置方案。
输入格式
共一行,一个整数 N。
输出格式
共四行,前三行每行输出一个整数序列,用来描述一种可行放置方案,序列中的第 i 个数表示第 i 行的棋子应该摆放的列的位置。
这三行描述的方案应该是整数序列字典序排在第一、第二、第三的方案。
第四行输出一个整数,表示可行放置方案的总数。
数据范围
6≤N≤13
输入样例:
6
输出样例:
2 4 6 1 3 5
3 6 2 5 1 4
4 1 5 2 6 3
4
利用两个一维数组,可以起到标记对角线的作用,因为在左下对角线中,往下一行走,它的行值加一,它的列值减一,所以它的行值加上它的列值是不变的。在右下对角线中,往下一行走,它的行值加一,但是n-i(行值),是减一的,因为(n-i)加上列值是不变的
#include <iostream>
using namespace std;
int arr[20];
int book1[20];
int book2[500];
int book3[500];
int n;
int sum;
void dfs(int step)
{
if (step == n+1)
{
sum++;
if (sum <= 3)
{
for (int i = 1; i <= n; i++)
{
cout << arr[i]<<' ';
}
cout << endl;
}
return;
}
for (int i = 1; i <= n; i++)
{ //根据上面分析,book2和book3分别标记对角线
if (book1[i] == 0 && book2[step + i] == 0 && book3[n - step + i] == 0)
{
arr[step] = i;
book1[i] = 1, book2[step + i] = 1, book3[n - step + i] = 1;
dfs(step + 1);
book1[i] = 0, book2[step + i] = 0, book3[n - step + i] = 0;
}
}
}
int main(void)
{
cin >> n;
dfs(1);
cout << sum;
return 0;
}