如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为摆动序列。第一个差(如果存在的话)可能是正数或负数。少于两个元素的序列也是摆动序列。
例如, [1,7,4,9,2,5] 是一个摆动序列,因为差值 (6,-3,5,-7,3) 是正负交替出现的。相反, [1,4,7,2,5] 和 [1,7,4,5,5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。
给定一个整数序列,返回作为摆动序列的最长子序列的长度。 通过从原始序列中删除一些(也可以不删除)元素来获得子序列,剩下的元素保持其原始顺序。
示例 1:
输入: [1,7,4,9,2,5]
输出: 6
解释: 整个序列均为摆动序列。
示例 2:
输入: [1,17,5,10,13,15,10,5,16,8]
输出: 7
解释: 这个序列包含几个长度为 7 摆动序列,其中一个可为[1,17,10,13,10,16,8]。
示例 3:
输入: [1,2,3,4,5,6,7,8,9]
输出: 2
来源:力扣(LeetCode)
链接:https://leetcode-cn.com/problems/wiggle-subsequence
用状态机的思想建立如下图方便理解
class Solution {
public:
int wiggleMaxLength(vector<int>& nums) {
if(nums.size() < 2){
return nums.size(); //序列个数小于2时直接为摇摆序列
}
static const int BEGIN = 0;
static const int UP = 1;
static const int DOWN = 2; //扫描序列的三种状态
int STATE = BEGIN;
int max_length = 1; //摇摆序列的最大长度至少为1
for(int i = 1;i < nums.size();i++) //从第二个元素开始扫描
{
switch(STATE){
case BEGIN:
if(nums[i-1]<nums[i]) //后一个比前一个小或大才会++
{
STATE = UP;
max_length++;
}else if(nums[i-1]>nums[i])
{
STATE = DOWN;
max_length++;
} //相等状态不变
break;
case UP:
if(nums[i-1]>nums[i]) //后一个比前一个小才会变成DOWN并max_length++
{
STATE = DOWN;
max_length++;
}
break;
case DOWN:
if(nums[i-1]<nums[i]) //后一个比前一个大才会变成UP并max_length++
{
STATE = UP;
max_length++;
}
break;
}
}
return max_length;
}
};