▌01 选择题分析
1.卷积计算选择题
这本来是信号与系统一道选择题目。
(1)选择题目
题目为:请选择一个三角脉冲信号与其自身卷积之后对应的波形是什么?
▲ 选择题
(2)分析过程
可以根据卷积的图解法帮助分析卷积的阶段。从信号与其自身卷积重叠的过程来看,整个卷积过程可以分范围六个阶段。下图显示了其中最初的三个阶段:
- 阶段一: t < − 1 t < - 1 t<−1,两个三角形不重叠;
- 阶段二: − 1 < t < − 1 2 - 1 < t < - {1 \over 2} −1<t<−21,两个三角形部分重叠;
- 阶段三: − 1 2 < t < 0 - {1 \over 2} < t < 0 −21<t<0,两个三角形大部分重叠。
注意阶段二、阶段三两个阶段对应的三角形重叠的方式并不相同。从 t > 0 t > 0 t>0 之后,两个三角形重叠的情况分别于阶段三、阶段二、阶段一相同。因此,卷积结果应该是左右对称。
阶段一对应的卷积结果为0; 阶段二对应的卷积结果是一个三次多项式;阶段三分析比较复杂。
▲ 求解分析过程
那么,座位选择题,如何来在不进行求解的情况下,来判断结果呢?
可以通过排除方法来进行选择。
首先,根据 f ( t ) ∗ δ ( t ) = f ( t ) f\left( t \right) * \delta \left( t \right) = f\left( t \right) f(t)∗δ(t)=f(t),所以,只有与 δ ( t ) \delta \left( t \right) δ(t)卷积,信号的波形才不会发生变化,所以选择(a)可以被排除;
根据刚才分析,两个三角形卷积,整个阶段应该分为六个阶段。(b)的结果只是显示了四个阶段(0,上升,下降,0),所以是错误的の;
根据前面分析,当两个三角形在开始重叠的时候,它的上升应该是高次多项式(三次函数),卷积结果曲线应该是下凹,而不是上凸,所以可以排除(d)。
最终可以判断只有(c)应该是正确的选择。
2.算计仿真结果
下面通过计算仿真来验证前面确定的结果。
使用Python编程形成窗口信号:
u ( t + 0.25 ) − u ( t − 0.25 ) u\left( {t + 0.25} \right) - u\left( {t - 0.25} \right) u(t+0.25)−u(t−0.25)
▲ Window function f(t)
这个窗口信号与自身进行卷积
▲ 三角脉冲信号
▲ 三角形与三角形卷积后的结果
通过上面仿真结果来看,的确验证了前面分析的正确性。
▌附件
#!/usr/local/bin/python
# -*- coding: gbk -*-
#============================================================
# TEST1.PY -- by Dr. ZhuoQing 2021-03-29
#
# Note:
#============================================================
from headm import *
def windowf(t, t1, t2):
return (heaviside(t-t1, 0.5) - heaviside(t-t2, 0.5))
t = linspace(-2, 2, 10000)
wt = windowf(t, -.25, .25)
twt = convolve(wt,wt, 'same') * 4 / len(t)
ttwt = convolve(twt,twt, 'same') * 4/len(t)
plt.plot(t, ttwt)
plt.xlabel("t")
plt.ylabel("f(t)")
plt.grid(True)
plt.tight_layout()
plt.show()
#------------------------------------------------------------
# END OF FILE : TEST1.PY
#============================================================