月牙形状的面积

简 介: 使用了两种方法求解月牙形状的面积,两种方法的计算结果在计算误差内是相同的。这也验证了它们计算结果的正确性。这两种方法都是采用了数值计算,没有给出最终的表达式。过程复杂程度相似。 不知道是否还比较巧妙的方法能够求取这个月牙的面积。

关键词 几何面积

record

月牙面积
目 录
Contents
题目要求
求解
求解方法二
总 结

 

§01 牙面积


  近在视频上看到一个求取下面月牙形阴影面积的题目,据介绍是小学五年级的题目。但是仔细思考一下,感觉还是颇有难度的。

一、题目要求

  在边长为2的正方形 A B C D ABCD ABCD 内部有一个内接圆形。以 A A A 点为中心绘制四分之一圆弧 与内接圆相交于 E F EF EF 两点。求两个弧线EF,EHGF围成月牙形阴影区域面积。

▲ 图1.1 几何图形内部的阴影面积

▲ 图1.1 几何图形内部的阴影面积

二、求解

  这是一个不规则图形求解面积,可以采用图像相减的方式来求解。阴影区域的面积可以有扇形OEF面积减去OEF内部的空白部分面积。 空白部分面积可以分为 S 1 S_1 S1 S 2 S_2 S2 组成。

▲ 图1.2.1 集合阴影面积相减

▲ 图1.2.1 集合阴影面积相减

  为了求取上面个部分的面积,需要知道角度 ∠ E O F \angle EOF EOF 的数值。

1、求角度EOF

  观察下面三角形 A O F AOF AOF ,它的三个边长根据图像可以方便求出, 2 , 2 , 1 \sqrt 2 ,2,1 2 ,2,1 。根据三角形内角公式可以求出 ∠ O A F \angle OAF OAF

∠ O A F = arccos ⁡ ( 2 + 2 2 − 1 2 2 ⋅ 2 ) = cos ⁡ − 1 5 2 8 \angle OAF = \arccos \left( {{{2 + 2^2 - 1} \over {2\sqrt 2 \cdot 2}}} \right) = \cos ^{ - 1} {{5\sqrt 2 } \over 8} OAF=arccos(22 22+221)=cos1852 那么 ∠ E A F = 2 ∠ O A F \angle EAF = 2\angle OAF EAF=2OAF

∠ A O F = arccos ⁡ 1 + 2 − 2 2 2 2 = cos ⁡ − 1 ( − 2 4 ) = 1.9322 \angle AOF = \arccos {{1 + 2 - 2^2 } \over {2\sqrt 2 }} = \cos ^{ - 1} \left( { - {{\sqrt 2 } \over 4}} \right) = 1.9322 AOF=arccos22 1+222=cos1(42 )=1.9322 ∠ E O F = 2 π − 2 ∠ A O F = 2 π − 2 × 1.9322 = 2.4188 \angle EOF = 2\pi - 2\angle AOF = 2\pi - 2 \times 1.9322 = 2.4188 EOF=2π2AOF=2π2×1.9322=2.4188

▲ 图1.2.2 增加辅助线之后的图形

▲ 图1.2.2 增加辅助线之后的图形

2、求扇形面积

  图中有两个扇形。

(1)半径为1的扇形

  半径为1的扇形 O E F OEF OEF 的面积,根据上面求出的 ∠ E O F \angle EOF EOF ,可以计算出来 S O E F = ∠ E O F 2 π ⋅ π = 2.4188 2 = 1.2094 S_{OEF} = {{\angle EOF} \over {2\pi }} \cdot \pi = {{2.4188} \over 2} = 1.2094 SOEF=2πEOFπ=22.4188=1.2094

(2)半径为2的扇形

  这是以 A A A 为圆形,边长为2的扇形: A E F AEF AEF 。 它的面积 S A E F = ∠ E A F 2 π ⋅ π ⋅ 2 2 = 2 cos ⁡ − 1 5 2 8 2 π ⋅ π ⋅ 4 = 1.9468 S_{AEF} = {{\angle EAF} \over {2\pi }} \cdot \pi \cdot 2^2 = {{2\cos ^{ - 1} {{5\sqrt 2 } \over 8}} \over {2\pi }} \cdot \pi \cdot 4 = 1.9468 SAEF=2πEAFπ22=2π2cos1852 π4=1.9468 之所以计算半径为2的扇形,主要是为了求取面积 S 2 S_2 S2

3、求取S1

  面积 S 1 S_1 S1 可以由所知道的 ∠ E O F \angle EOF EOF ,以及两个边长为1。 根据三角形面积 a r e a = 0.5 a b × sin ⁡ ( C ) area = 0.5ab \times \sin \left( C \right) area=0.5ab×sin(C) 。所以 S 1 = 1 2 × 1 × 1 × sin ⁡ ( 2.4188 ) = 0.3307 S_1 = {1 \over 2} \times 1 \times 1 \times \sin \left( {2.4188} \right) = 0.3307 S1=21×1×1×sin(2.4188)=0.3307

4、求取S2

S 2 S_2 S2 的面积等于扇形 E A F EAF EAF 的面积减去三角形 A E F AEF AEF 的面积。扇形 E A F EAF EAF 面积前面已经求出。三角形 E A F EAF EAF 面积为 S Δ A E F = 1 2 × 2 × 2 × sin ⁡ ( 2 × ∠ O A F ) = 2 sin ⁡ ( 2 × 0.4867 ) = 1.6536 S_{\Delta AEF} = {1 \over 2} \times 2 \times 2 \times \sin \left( {2 \times \angle OAF} \right) = 2\sin \left( {2 \times 0.4867} \right) = 1.6536 SΔAEF=21×2×2×sin(2×OAF)=2sin(2×0.4867)=1.6536 因此 S 2 = 1.9468 − 1.6536 = 0.2932 S_2 = 1.9468 - 1.6536 = 0.2932 S2=1.94681.6536=0.2932

5、阴影面积

  至此,月牙阴影面积 A M o o n A_{Moon} AMoon 可以获得 A M o o n = 1.2094 − 0.3307 − 0.2932 = 0.5855 A_{Moon} = 1.2094 - 0.3307 - 0.2932 = 0.5855 AMoon=1.20940.33070.2932=0.5855

三、求解方法二

  月牙阴影面积也可以通过求生四分之一弧 B C BC BC 与两个直角边 C D , B D CD,BD CD,BD 组成的曲边三角形的面积 Δ C B D \Delta CBD ΔCBD 的面积减去 S 1 + 2 S 2 S_1 + 2S_2 S1+2S2 。其中 S 1 , S 2 S_1 ,S_2 S1,S2 如下图所示。

▲ 图1.3.1 一些缝隙面积示意图

▲ 图1.3.1 一些缝隙面积示意图

1、曲边三角形CDB面积

  曲边三角形CDB的面积等于正方形 A B C D ABCD ABCD 的面积减去四分之一,半径为2的圆的面积 S Δ C D B = 2 2 − 1 4 π × 2 2 = 4 − π = 0.8584 S_{\Delta CDB} = 2^2 - {1 \over 4}\pi \times 2^2 = 4 - \pi = 0.8584 SΔCDB=2241π×22=4π=0.8584

2、计算S1面积

S 1 S_1 S1 的计算与上面曲边三角形一样,只是此时对应的正方形和四分之一圆半径都减少了一倍, S 1 = 1 2 − 1 4 × π = 0.2146 S_1 = 1^2 - {1 \over 4} \times \pi = 0.2146 S1=1241×π=0.2146

3、计算S2面积

(1)确定E点位置

  为了确定E点距离AC, CD的距离,需要求取 ∠ C A E \angle CAE CAE ∠ C A E = π 4 − ∠ E A O \angle CAE = {\pi \over 4} - \angle EAO CAE=4πEAO 根据前面分析,可知 ∠ E A O = cos ⁡ − 1 5 2 8 = 0.4867 \angle EAO = \cos ^{ - 1} {{5\sqrt 2 } \over 8} = 0.4867 EAO=cos1852 =0.4867 所以 ∠ C A E = π 4 − 0.4867 = 0.2987 \angle CAE = {\pi \over 4} - 0.4867 = 0.2987 CAE=4π0.4867=0.2987

▲ 图1.3.2 计算S2的面积所使用的辅助线

▲ 图1.3.2 计算S2的面积所使用的辅助线

  所以E距离AC的距离 d E − A C = 2 ⋅ sin ⁡ ( ∠ C A E ) = 2 sin ⁡ ( 0.2987 ) = 0.5886 d_{E - AC} = 2 \cdot \sin \left( {\angle CAE} \right) = 2\sin \left( {0.2987} \right) = 0.5886 dEAC=2sin(CAE)=2sin(0.2987)=0.5886 E点距离CD的距离 d E − C D = 2 − 2 cos ⁡ ∠ C A E = 2 − 2 × cos ⁡ ( 0.2987 ) = 0.0886 d_{E - CD} = 2 - 2\cos \angle CAE = 2 - 2 \times \cos \left( {0.2987} \right) = 0.0886 dECD=22cosCAE=22×cos(0.2987)=0.0886

S 2 S_2 S2 的面积分解成两个面积 S 21 , S 22 S_{21} ,S_{22} S21,S22 来进行计算 S 2 = S 21 + S 22 S_2 = S_{21} + S_{22} S2=S21+S22

(2)计算S21

S 21 S_{21} S21 是由梯形 A E S 2 C AES_2 C AES2C 的面积减去扇形 A C E ACE ACE 的面积 S 21 = d E − C D + 2 2 ⋅ d E − A C − ∠ C A E 2 π ⋅ π × 2 2 S_{21} = {{d_{E - CD} + 2} \over 2} \cdot d_{E - AC} - {{\angle CAE} \over {2\pi }} \cdot \pi \times 2^2 S21=2dECD+2dEAC2πCAEπ×22 = 0.0886 + 2 2 × 0.5886 − 0.2987 2 π × π × 4 = 0.01727 = {{0.0886 + 2} \over 2} \times 0.5886 - {{0.2987} \over {2\pi }} \times \pi \times 4 = 0.01727 =20.0886+2×0.58862π0.2987×π×4=0.01727

(3)计算S22

  首先需要计算 ∠ E O G \angle EOG EOG ∠ E O G = ∠ E O F 2 − π 4 = 0.4240 \angle EOG = {{\angle EOF} \over 2} - {\pi \over 4} = 0.4240 EOG=2EOF4π=0.4240

S 22 S_{22} S22 是由梯形 O E S 2 G OES_2 G OES2G 面积减去扇形 O E G OEG OEG 的面积 S 22 = d E − C D + 1 2 × ( 1 − d E − C A ) + ∠ E O G 2 π ⋅ π = 0.01193 S_{22} = {{d_{E - CD} + 1} \over 2} \times \left( {1 - d_{E - CA} } \right) + {{\angle EOG} \over {2\pi }} \cdot \pi = 0.01193 S22=2dECD+1×(1dECA)+2πEOGπ=0.01193

▲ 图1.3.3 S2分解成两个面积计算

▲ 图1.3.3 S2分解成两个面积计算

  因此 S 2 = S 21 + S 22 = 0.01727 + 0.01193 = 0.0292 S_2 = S_{21} + S_{22} = 0.01727 + 0.01193 = 0.0292 S2=S21+S22=0.01727+0.01193=0.0292

4、阴影月牙面积

  所以最终月牙面积为 S M o o n = S Δ C B D − S 1 − 2 S 2 = 0.8584 − 0.2146 − 2 × 0.0292 = 0.5854 S_{Moon} = S_{\Delta CBD} - S_1 - 2S_2 = 0.8584 - 0.2146 - 2 \times 0.0292 = 0.5854 SMoon=SΔCBDS12S2=0.85840.21462×0.0292=0.5854

 

§02 APPLE讲解


前言

问题由来IMAGE1M1IMAGE2M2IMAGE3M3
在西瓜视频中,看到一个五年级的趣闻几何题目,

它是询问求解下面图像中阴影区域面积。

这个问题的确很诱人, 可是后面视频作者并没有给出答案。 仅仅是论证这个题目在5年级涵盖的数学中是无法求解的。
那么问题来了。这个题目究竟该如何求解呢?

第一种方法求解

第一中秋节方法IMAGE1M1IMAGE2M2IMAGE3M3
下面我们介绍第一种求解月牙阴影面积方式。利用图像相减过程求解。

这是一个扇形的区域。

减去这部分空白部分的面积,剩下的就是阴影的面积了。
空白部分又可以分成两部分。

上面这部分是三角形,我们记做S1。

下面这部分是圆形的切出的边界形状。记做S2。
我们把扇形面积记做S2,

那么阴影面积就等于S3减去S1和S2。

下面我们分别计算S1,S2,S3。
为了便于求取S1,S2 ,我们做出以下辅助线。

S2的面积可以看成以A点为中心的扇形面积。

减去三角形AEF的面积。
我们看到,无论是计算扇形的面积,还是三角形的面积, 都需要知道EAF这个角度。 这个角度由OA分割成平均两份。

对于OAF这一半的角度, 可以有三角形OAF来计算机上来。 这个三角形的三个边分别是根号2,2,和1, 所以可以计算出OAF夹角。

根据已知的OAF夹角, 乘以2便可以得到EAF夹角了。

基于这个夹角,可以计算出这个编程为2的扇形的面积。 等于角度比上2,pi, 乘以半径为2 的圆的面积。

同样可以的计算出这个三角形的面积, 等于二分之一,乘以相邻两边, 再成绩角度的sin值。
这里给出了扇形和三角形的计算数值, 这样可以得到S2的面积, 等于0.2932。

同理,根据已知的角度,可以计算出三角形S1的面积, 这里就不再详细推导了。

最后,可得到月牙阴影面积, 等于半径为1的扇形面积, 减去S1,S2, 最后的面积为0.5855。
总结IMAGE1M1IMAGE2M2IMAGE3M3
我最后才发现,原来网络上之所以把这样的问题求解, 当成小学五年级的思维拓展。

实际上是大多数给出的参考答案, 都是错误的。

如果将题目修改成这种形式, 则相对比较容易求出了。

 

  结 ※


  使用了两种方法求解月牙形状的面积,两种方法的计算结果在计算误差内是相同的。这也验证了它们计算结果的正确性。这两种方法都是采用了数值计算,没有给出最终的表达式。过程复杂程度相似。 不知道是否还比较巧妙的方法能够求取这个月牙的面积。


● 相关图表链接:

评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

卓晴

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值