简 介: 使用了两种方法求解月牙形状的面积,两种方法的计算结果在计算误差内是相同的。这也验证了它们计算结果的正确性。这两种方法都是采用了数值计算,没有给出最终的表达式。过程复杂程度相似。 不知道是否还比较巧妙的方法能够求取这个月牙的面积。
关键词
: 几何,面积
record
§01 月牙面积
最近在视频上看到一个求取下面月牙形阴影面积的题目,据介绍是小学五年级的题目。但是仔细思考一下,感觉还是颇有难度的。
一、题目要求
在边长为2的正方形 A B C D ABCD ABCD 内部有一个内接圆形。以 A A A 点为中心绘制四分之一圆弧 与内接圆相交于 E F EF EF 两点。求两个弧线EF,EHGF围成月牙形阴影区域面积。
▲ 图1.1 几何图形内部的阴影面积
二、求解
这是一个不规则图形求解面积,可以采用图像相减的方式来求解。阴影区域的面积可以有扇形OEF面积减去OEF内部的空白部分面积。 空白部分面积可以分为 S 1 S_1 S1 和 S 2 S_2 S2 组成。
▲ 图1.2.1 集合阴影面积相减
为了求取上面个部分的面积,需要知道角度 ∠ E O F \angle EOF ∠EOF 的数值。
1、求角度EOF
观察下面三角形 A O F AOF AOF ,它的三个边长根据图像可以方便求出, 2 , 2 , 1 \sqrt 2 ,2,1 2,2,1 。根据三角形内角公式可以求出 ∠ O A F \angle OAF ∠OAF 。
∠ O A F = arccos ( 2 + 2 2 − 1 2 2 ⋅ 2 ) = cos − 1 5 2 8 \angle OAF = \arccos \left( {{{2 + 2^2 - 1} \over {2\sqrt 2 \cdot 2}}} \right) = \cos ^{ - 1} {{5\sqrt 2 } \over 8} ∠OAF=arccos(22⋅22+22−1)=cos−1852 那么 ∠ E A F = 2 ∠ O A F \angle EAF = 2\angle OAF ∠EAF=2∠OAF 。
∠ A O F = arccos 1 + 2 − 2 2 2 2 = cos − 1 ( − 2 4 ) = 1.9322 \angle AOF = \arccos {{1 + 2 - 2^2 } \over {2\sqrt 2 }} = \cos ^{ - 1} \left( { - {{\sqrt 2 } \over 4}} \right) = 1.9322 ∠AOF=arccos221+2−22=cos−1(−42)=1.9322 ∠ E O F = 2 π − 2 ∠ A O F = 2 π − 2 × 1.9322 = 2.4188 \angle EOF = 2\pi - 2\angle AOF = 2\pi - 2 \times 1.9322 = 2.4188 ∠EOF=2π−2∠AOF=2π−2×1.9322=2.4188
▲ 图1.2.2 增加辅助线之后的图形
2、求扇形面积
图中有两个扇形。
(1)半径为1的扇形
半径为1的扇形 O E F OEF OEF 的面积,根据上面求出的 ∠ E O F \angle EOF ∠EOF ,可以计算出来 S O E F = ∠ E O F 2 π ⋅ π = 2.4188 2 = 1.2094 S_{OEF} = {{\angle EOF} \over {2\pi }} \cdot \pi = {{2.4188} \over 2} = 1.2094 SOEF=2π∠EOF⋅π=22.4188=1.2094
(2)半径为2的扇形
这是以 A A A 为圆形,边长为2的扇形: A E F AEF AEF 。 它的面积 S A E F = ∠ E A F 2 π ⋅ π ⋅ 2 2 = 2 cos − 1 5 2 8 2 π ⋅ π ⋅ 4 = 1.9468 S_{AEF} = {{\angle EAF} \over {2\pi }} \cdot \pi \cdot 2^2 = {{2\cos ^{ - 1} {{5\sqrt 2 } \over 8}} \over {2\pi }} \cdot \pi \cdot 4 = 1.9468 SAEF=2π∠EAF⋅π⋅22=2π2cos−1852⋅π⋅4=1.9468 之所以计算半径为2的扇形,主要是为了求取面积 S 2 S_2 S2 。
3、求取S1
面积 S 1 S_1 S1 可以由所知道的 ∠ E O F \angle EOF ∠EOF ,以及两个边长为1。 根据三角形面积 a r e a = 0.5 a b × sin ( C ) area = 0.5ab \times \sin \left( C \right) area=0.5ab×sin(C) 。所以 S 1 = 1 2 × 1 × 1 × sin ( 2.4188 ) = 0.3307 S_1 = {1 \over 2} \times 1 \times 1 \times \sin \left( {2.4188} \right) = 0.3307 S1=21×1×1×sin(2.4188)=0.3307
4、求取S2
S 2 S_2 S2 的面积等于扇形 E A F EAF EAF 的面积减去三角形 A E F AEF AEF 的面积。扇形 E A F EAF EAF 面积前面已经求出。三角形 E A F EAF EAF 面积为 S Δ A E F = 1 2 × 2 × 2 × sin ( 2 × ∠ O A F ) = 2 sin ( 2 × 0.4867 ) = 1.6536 S_{\Delta AEF} = {1 \over 2} \times 2 \times 2 \times \sin \left( {2 \times \angle OAF} \right) = 2\sin \left( {2 \times 0.4867} \right) = 1.6536 SΔAEF=21×2×2×sin(2×∠OAF)=2sin(2×0.4867)=1.6536 因此 S 2 = 1.9468 − 1.6536 = 0.2932 S_2 = 1.9468 - 1.6536 = 0.2932 S2=1.9468−1.6536=0.2932
5、阴影面积
至此,月牙阴影面积 A M o o n A_{Moon} AMoon 可以获得 A M o o n = 1.2094 − 0.3307 − 0.2932 = 0.5855 A_{Moon} = 1.2094 - 0.3307 - 0.2932 = 0.5855 AMoon=1.2094−0.3307−0.2932=0.5855
三、求解方法二
月牙阴影面积也可以通过求生四分之一弧 B C BC BC 与两个直角边 C D , B D CD,BD CD,BD 组成的曲边三角形的面积 Δ C B D \Delta CBD ΔCBD 的面积减去 S 1 + 2 S 2 S_1 + 2S_2 S1+2S2 。其中 S 1 , S 2 S_1 ,S_2 S1,S2 如下图所示。
▲ 图1.3.1 一些缝隙面积示意图
1、曲边三角形CDB面积
曲边三角形CDB的面积等于正方形 A B C D ABCD ABCD 的面积减去四分之一,半径为2的圆的面积 S Δ C D B = 2 2 − 1 4 π × 2 2 = 4 − π = 0.8584 S_{\Delta CDB} = 2^2 - {1 \over 4}\pi \times 2^2 = 4 - \pi = 0.8584 SΔCDB=22−41π×22=4−π=0.8584
2、计算S1面积
S 1 S_1 S1 的计算与上面曲边三角形一样,只是此时对应的正方形和四分之一圆半径都减少了一倍, S 1 = 1 2 − 1 4 × π = 0.2146 S_1 = 1^2 - {1 \over 4} \times \pi = 0.2146 S1=12−41×π=0.2146
3、计算S2面积
(1)确定E点位置
为了确定E点距离AC, CD的距离,需要求取 ∠ C A E \angle CAE ∠CAE 。 ∠ C A E = π 4 − ∠ E A O \angle CAE = {\pi \over 4} - \angle EAO ∠CAE=4π−∠EAO 根据前面分析,可知 ∠ E A O = cos − 1 5 2 8 = 0.4867 \angle EAO = \cos ^{ - 1} {{5\sqrt 2 } \over 8} = 0.4867 ∠EAO=cos−1852=0.4867 所以 ∠ C A E = π 4 − 0.4867 = 0.2987 \angle CAE = {\pi \over 4} - 0.4867 = 0.2987 ∠CAE=4π−0.4867=0.2987
▲ 图1.3.2 计算S2的面积所使用的辅助线
所以E距离AC的距离 d E − A C = 2 ⋅ sin ( ∠ C A E ) = 2 sin ( 0.2987 ) = 0.5886 d_{E - AC} = 2 \cdot \sin \left( {\angle CAE} \right) = 2\sin \left( {0.2987} \right) = 0.5886 dE−AC=2⋅sin(∠CAE)=2sin(0.2987)=0.5886 E点距离CD的距离 d E − C D = 2 − 2 cos ∠ C A E = 2 − 2 × cos ( 0.2987 ) = 0.0886 d_{E - CD} = 2 - 2\cos \angle CAE = 2 - 2 \times \cos \left( {0.2987} \right) = 0.0886 dE−CD=2−2cos∠CAE=2−2×cos(0.2987)=0.0886
S 2 S_2 S2 的面积分解成两个面积 S 21 , S 22 S_{21} ,S_{22} S21,S22 来进行计算 S 2 = S 21 + S 22 S_2 = S_{21} + S_{22} S2=S21+S22 。
(2)计算S21
S 21 S_{21} S21 是由梯形 A E S 2 C AES_2 C AES2C 的面积减去扇形 A C E ACE ACE 的面积 S 21 = d E − C D + 2 2 ⋅ d E − A C − ∠ C A E 2 π ⋅ π × 2 2 S_{21} = {{d_{E - CD} + 2} \over 2} \cdot d_{E - AC} - {{\angle CAE} \over {2\pi }} \cdot \pi \times 2^2 S21=2dE−CD+2⋅dE−AC−2π∠CAE⋅π×22 = 0.0886 + 2 2 × 0.5886 − 0.2987 2 π × π × 4 = 0.01727 = {{0.0886 + 2} \over 2} \times 0.5886 - {{0.2987} \over {2\pi }} \times \pi \times 4 = 0.01727 =20.0886+2×0.5886−2π0.2987×π×4=0.01727
(3)计算S22
首先需要计算 ∠ E O G \angle EOG ∠EOG ∠ E O G = ∠ E O F 2 − π 4 = 0.4240 \angle EOG = {{\angle EOF} \over 2} - {\pi \over 4} = 0.4240 ∠EOG=2∠EOF−4π=0.4240
S 22 S_{22} S22 是由梯形 O E S 2 G OES_2 G OES2G 面积减去扇形 O E G OEG OEG 的面积 S 22 = d E − C D + 1 2 × ( 1 − d E − C A ) + ∠ E O G 2 π ⋅ π = 0.01193 S_{22} = {{d_{E - CD} + 1} \over 2} \times \left( {1 - d_{E - CA} } \right) + {{\angle EOG} \over {2\pi }} \cdot \pi = 0.01193 S22=2dE−CD+1×(1−dE−CA)+2π∠EOG⋅π=0.01193
▲ 图1.3.3 S2分解成两个面积计算
因此 S 2 = S 21 + S 22 = 0.01727 + 0.01193 = 0.0292 S_2 = S_{21} + S_{22} = 0.01727 + 0.01193 = 0.0292 S2=S21+S22=0.01727+0.01193=0.0292
4、阴影月牙面积
所以最终月牙面积为 S M o o n = S Δ C B D − S 1 − 2 S 2 = 0.8584 − 0.2146 − 2 × 0.0292 = 0.5854 S_{Moon} = S_{\Delta CBD} - S_1 - 2S_2 = 0.8584 - 0.2146 - 2 \times 0.0292 = 0.5854 SMoon=SΔCBD−S1−2S2=0.8584−0.2146−2×0.0292=0.5854
§02 APPLE讲解
前言
问题由来 | IMAGE1 | M1 | IMAGE2 | M2 | IMAGE3 | M3 |
---|---|---|---|---|---|---|
在西瓜视频中,看到一个五年级的趣闻几何题目, 它是询问求解下面图像中阴影区域面积。 这个问题的确很诱人, 可是后面视频作者并没有给出答案。 仅仅是论证这个题目在5年级涵盖的数学中是无法求解的。 | ![]() | ![]() | ![]() | |||
那么问题来了。这个题目究竟该如何求解呢? | ![]() |
第一种方法求解
第一中秋节方法 | IMAGE1 | M1 | IMAGE2 | M2 | IMAGE3 | M3 |
---|---|---|---|---|---|---|
下面我们介绍第一种求解月牙阴影面积方式。利用图像相减过程求解。 这是一个扇形的区域。 减去这部分空白部分的面积,剩下的就是阴影的面积了。 | ![]() | ![]() | ![]() | |||
空白部分又可以分成两部分。 上面这部分是三角形,我们记做S1。 下面这部分是圆形的切出的边界形状。记做S2。 | ![]() | ![]() | ![]() | |||
我们把扇形面积记做S2, 那么阴影面积就等于S3减去S1和S2。 下面我们分别计算S1,S2,S3。 | ![]() | ![]() | ||||
为了便于求取S1,S2 ,我们做出以下辅助线。 S2的面积可以看成以A点为中心的扇形面积。 减去三角形AEF的面积。 | ![]() | ![]() | ![]() | |||
我们看到,无论是计算扇形的面积,还是三角形的面积, 都需要知道EAF这个角度。 这个角度由OA分割成平均两份。 对于OAF这一半的角度, 可以有三角形OAF来计算机上来。 这个三角形的三个边分别是根号2,2,和1, 所以可以计算出OAF夹角。 | ![]() | ![]() | ||||
根据已知的OAF夹角, 乘以2便可以得到EAF夹角了。 基于这个夹角,可以计算出这个编程为2的扇形的面积。 等于角度比上2,pi, 乘以半径为2 的圆的面积。 同样可以的计算出这个三角形的面积, 等于二分之一,乘以相邻两边, 再成绩角度的sin值。 | ![]() | ![]() | ![]() | |||
这里给出了扇形和三角形的计算数值, 这样可以得到S2的面积, 等于0.2932。 同理,根据已知的角度,可以计算出三角形S1的面积, 这里就不再详细推导了。 最后,可得到月牙阴影面积, 等于半径为1的扇形面积, 减去S1,S2, 最后的面积为0.5855。 | ![]() | ![]() | ![]() |
总结 | IMAGE1 | M1 | IMAGE2 | M2 | IMAGE3 | M3 |
---|---|---|---|---|---|---|
我最后才发现,原来网络上之所以把这样的问题求解, 当成小学五年级的思维拓展。 实际上是大多数给出的参考答案, 都是错误的。 如果将题目修改成这种形式, 则相对比较容易求出了。 | ![]() | ![]() | ![]() |
※ 总 结 ※
使用了两种方法求解月牙形状的面积,两种方法的计算结果在计算误差内是相同的。这也验证了它们计算结果的正确性。这两种方法都是采用了数值计算,没有给出最终的表达式。过程复杂程度相似。 不知道是否还比较巧妙的方法能够求取这个月牙的面积。
● 相关图表链接: