CUDA流并行的思考

不少博客在介绍流任务并行时,都会说“为了高效利用多个流,将操作放入流的队列时应采用宽度优先方式而非深度优先”。

其实不然。当H2D和D2H是同一个引擎执行时,确实流宽度优先能获得更高的效率。但是,当H2D和D2H是不同引擎执行,并且H2D和D2H支持同时执行时,流深度优先反而是效率更高的。假设H2D和D2H的执行时间都是Tc,kenel执行的时间是2*Tc,当H2D和D2H是不同引擎执行时,深度优先的总执行时间是7Tc,宽度优先的执行时间是8Tc。

在 CUDA_C_Best_Practices_Guide 里有这样的说明:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值