文章目录
一、随机变量函数的分布(Chap 2.5)
类型一:X为离散型变量,则Y也为离散型变量
例题

【注】同一个x,可能y相同
类型二:X为连续型——分布函数法
方法:

【注】
- 用概率P(即分布函数 F)将X和Y联系在一起,求出FY(y),再求fY(y))
- 可见0和1球求导之后都是0,所以不能由fY(y)=0得出FY(y)=0
例1 X与Y为线性关系

【总结】
- 记住结论,注意y的范围与x的范围对应
- 分情况:a>0和a<0(a的正负会影响不等式的符号,从而因影响积分FY(y)
- 会变上限积分,注意有复合函数的积分 Why?
例2 X与Y为幂函数关系

【总结】
- 记住结论(稍微有点难记,也可以自己推导)
- 分情况:n为奇数还是偶数,y的范围(-∞,+∞)还是(0,+∞)
- 一定要作图辅助解不等式
- 会变上限积分,注意有复合函数的积分
例3 X(正态分布)与Y=X2 (例2的特例)

【伽马函数】
见概率论w(1)1.pdf P128
【初步了解】
正态分布、卡方分布、伽马分布的关系
例4 由指数分布生成均匀分布

【结论】
- 指数分布(本题)、伽马分布、正态分布都可以通过Y去其本身的分布函数,从而转化为均匀分布
- 同样,均匀分布也可以转化为其他分布(见例5)
- 均匀分布是最特殊的分布
例5 由均匀分布生成指数分布

【注意】
- 对数函数要有意义,x不能取1
- 注意X和Y的关系(同例4进行比较)
例6 X和Y为三角函数关系

二、条件分布(Chap 3.3)
类型一、二维离散型随机变量
因为
【注】
- 条件分布是分布律,且是一维分布, 因为有一个变量固定了,只有一个变量
- 求条件分布律,首先要求联合分布律和边缘分布律
例一
例二 射击问题
【注】
- 求联合分布律的时候,i和j是固定的,所以概率不需要考虑位置问题
- 边缘分布分别是几何分布和负二项分布,符合实际意义
- 首次中的前提下,第二次中又是一个新的几何分布;在第二次中的前提下,第一种中是可能的,均符合实际意义
类型二、二维连续型随机变量
特别注意!
因为连续性变量在一点的概率为0 ,所以分母上一定不能出现P(Y=y),只能用概率密度函数f来代替概率P,同样,条件密度=联合密度÷边缘密度
例一
【注】
- 联合密度转化为边缘密度的方法:将另一个变量从-∞到+∞积分
- 由条件概率密度到条件分布函数,即积分的过程,特别注意,趋向于-∞的时候,条件分布函数=0,趋向于+∞的时候,条件分布函数=1,中间段积分积出来,会有一个常数C,用连续型求出C
- 再求第三小问的时候,既可以再积分,也可以直接用求得的条件分布函数代值计算,二者结合可以检查
- 结论:均匀分布的而条件分布还是均匀分布(可以用作检查手段)
例二
【注意】
注意变式3,条件不再是一个值,而是一个范围,此时,用原始的定义,分母不再为0