【OpenCV-Python】二值化

全局阈值

retval, dst = cv.threshold( src, thresh, maxval, type[, dst] )

对多通道图像进行固定阈值的二值化。

参数含义
src多通道,8位或32位浮点数图像
dst与输入图像相同尺寸,相同数据类型、相同通道数的图像
thresh阈值
maxval用于THRESH_BINARYTHRESH_BINARY_INV标志下的最大值
type阈值化方法

阈值化方法

在这里插入图片描述

方法含义
cv.THRESH_BINARY像素值大于给定阈值的被设置为指定的最大值,否则设置为零
cv.THRESH_BINARY_INV像素值小于给定阈值的被设置为指定的最大值,否则设置为零
cv.THRESH_TRUNC像素值大于给定阈值的被设置给定阈值,其余像素值不变
cv.THRESH_TOZERO像素值大于给定阈值的不变,其余像素值为零
cv.THRESH_TOZERO_INV像素值大于给定阈值的设置为零,其余像素值不变
cv.THRESH_MASK
cv.THRESH_OTSU使用OTSU算法选择最优的阈值,需与前面的类型组合使用且仅支持单通道图像
cv.THRESH_TRIANGLE使用Triangle算法选择最优的阈值,需与前面的类型组合使用且仅支持单通道图像

在这里插入图片描述

局部阈值

dst = cv.adaptiveThreshold( src, maxValue, adaptiveMethod, thresholdType, blockSize, C[, dst] )

参数说明
src8位单通道图像
dst与输入图像相同尺寸,相同类型的输出图像
maxValue在满足条件下的非零值将被赋予的值
adaptiveMethod自适应阈值方法. cv.ADAPTIVE_THRESH_MEAN_C 和 cv.ADAPTIVE_THRESH_GAUSSIAN_C
两种方法都是逐个像素计算自适应阈值T(x,y),方法是通过计算每个像素周围的blocksize * blocksize区域的加权平均值然后减去常量C。不同的是,如果选择的均值方法是cv.ADAPTIVE_THRESH_MEAN_C,那么均值时取得权值是相等的。如果选择的均值方法是cv.ADAPTIVE_THRESH_GAUSSIAN_C,(x,y)周围的像素的权值则根据其到中心点的距离通过高斯方程得到
thresholdType阈值化方法,仅支持 THRESH_BINARY or THRESH_BINARY_INV
blockSize自动计算时,使用邻域的尺寸大小
C常量
import cv2 as cv
import numpy as np
from matplotlib import pyplot as plt

img = cv.imread('./opencv/images/lena-gray.jpg')

img_mean_binary = cv.adaptiveThreshold(img[:, :, 0], 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY, 11, 10)
img_mean_binary_inv = cv.adaptiveThreshold(img[:, :, 0], 255, cv.ADAPTIVE_THRESH_MEAN_C, cv.THRESH_BINARY_INV, 11, 10)

img_gauss_binary = cv.adaptiveThreshold(img[:, :, 0], 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY, 11, 10)
img_gauss_binary_inv = cv.adaptiveThreshold(img[:, :, 0], 255, cv.ADAPTIVE_THRESH_GAUSSIAN_C, cv.THRESH_BINARY_INV, 11, 10)

plt.figure()
plt.subplot(2, 2, 1), plt.imshow(img_mean_binary), plt.title('img_mean_binary')
plt.subplot(2, 2, 2), plt.imshow(img_mean_binary_inv), plt.title('img_mean_binary_inv')

plt.subplot(2, 2, 3), plt.imshow(img_gauss_binary), plt.title('img_gauss_binary')
plt.subplot(2, 2, 4), plt.imshow(img_gauss_binary_inv), plt.title('img_gauss_binary_inv')

plt.show()

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zhy29563

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值