RK3588(自带NPU)的环境搭建和体验(一)

前言:这是本系列文章的第一篇,这里介绍一些必要的环境和工具,后面的文章不再介绍。

工具:i7-6700四核八线程、GTX960M显卡的渣渣笔记本(16G内存 + 512G固态 +1T机械)、Ubuntu18.04(VMware虚拟机安装,8G + 200G) 、一块RK3588S开发板,USB type-c线、12v电源线、一杯咖啡。

一、开发板简介

        rk3588是瑞芯微2022.3.4日发布的一款八核64位处理器,采用8nm,主频2.4GHZ, 集成ARM Mali-G610 MP4四核GPU,内置NPU(重点),可提供6Tops算力,最大支持32G内存。支持8K视频编解码,支持NVMe SSD固态扩展。如图(网上找到的图,侵删)

 对于本系列的博文来说,最重要的是自带的NPU。

详细数据可以去官网查看。

二、安装开发环境

        环境安装的比较多,主要是python相关的依赖包和RKNN-Toolkit2.

1. 安装python3.6和pip3

sudo apt-get install python3 python3-dev python3-pip

2. 安装依赖

sudo apt-get install libxslt1-dev zlib1g zlib1g-dev libglib2.0-0 libsm6 \
libgl1-mesa-glx libprotobuf-dev gcc

3.安装RKNN-Toolkit2安装包

        1)安装python依赖(安装之前最好更新下pip3,我后面遇到了问题就是更新之后才解决的,下面的博文中谈到)

numpy==1.16.6
onnx==1.7.0
onnxoptimizer==0.1.0
onnxruntime==1.6.0
tensorflow==1.14.0
tensorboard==1.14.0
protobuf==3.12.0
torch==1.6.0
torchvision==0.7.0
psutil==5.6.2
ruamel.yaml==0.15.81
scipy==1.2.1
tqdm==4.27.0
requests==2.21.0
opencv-python==4.4.0.46
PuLP==2.4
scikit_image==0.17.2
bfloat16==1.1
flatbuffers==1.12

        2)安装RKNN-Toolkit2

sudo pip3 install rknn_toolkit2-1.3.0_11912b58-cp36-cp36m-linux_x86_64.whl

        3)检查RKNN-Toolkit2是否安装成功

        

                 已安装成功。

三、在rk3588s上测试
    

        测试rk3588s,需要使用usb线连接开发板和电脑,之后通过adb进行操作。


1. 查看设备

 可以看到设备ID为ff3c685cc52f4821,这个ID在python脚本里面设置NPU时用到。

2. 更新板子的rknn_server 和librknnrt.so

librknnrt.so: 是一个板端的runtime 库。
rknn_server: 是一个运行在板子上的后台代理服务,用于接收PC 通过USB 传输过来的协议,
然后执行板端runtime 对应的接口,并返回结果给PC。

这两个文件只需要更新一次。之后直接连接usb线,在python里面配置就行。

adb root
adb remount
adb push \
rknn_server \
/vendor/bin/
adb push \
librknnrt.so /vendor/lib64/
adb shell
chmod +x /vendor/bin/rknn_server
sync
reboot	

3. 使用脚本进行测试
    

到这里,环境已经配置好了,下面使用自带的YOLOV5算法进行测试。
 

  python3.6 test.py

输出的日志比较多,大概就是,先初始化RKNN的环境,连接NPU,将yolov5生成的模型(onnx类型的文件)转化为rknn模型(瑞芯微NPU专用的模型文件),进行识别,将结果写入到图片中。

这里只截取其中一部分输出结果进行说明。

1)连接NPU

这一部分可以看到芯片的型号,通过adb连接rk3588。能成功连接。

 2)识别结果

这一部分时将识别出来的结果输出出来,就是识别的目标类别、坐标、尺寸、概率大小等。

3)结果图像

将结果图像通过fim打开,可以看到,已经在图像上进行标注了。

 四、安装环境是遇到问题

1. protobuf requires Python '>=3.7' but the running Python is 3.6.9

 解决办法:更新pip之后重新安装tensorflow

更新指令:python3.6 -m pip install --upgrade pip3

2.No matching distribution found for onnxruntime==1.6.0

 原因:onnxruntime找不到版本,可以去网上下载一个。

安装:pip3 install onnxruntime-1.6.0-cp36-cp36m-linux_x86_64.whl

名字要将manylinx2014改成linux

我用的是这个版本,链接:

 onnxruntime · PyPI

3. No matching distribution found for skbuild

 解决办法:pip3 install -i https://pypi.tuna.tsinghua.edu.cn/simple scikit-build

4. adb root失败

 原因:root未启动。

解决: 执行命令adb shell setprop persist.sys.root_access 3 ,再使用adb root

五、总结

        环境的安装还算可以,按照资料里面走基本都能正常安装。晚上测试了一下,使用SSD算法转化的rknn模块,直接加载,进行推理(NPU只有推理),大概需要40ms左右。这是第一次使用NPU进行操作,可能出错,不一定对,也没有对芯片的主频进行固定,后面测试的时候,学习下怎么固定频率进行测试。后面还要继续学习。

### 在 RK3588 平台上进行 Python 系统封装运行 #### 安装必要的依赖项 为了确保能够在 RK3588 上顺利运行 Python 应用程序,首先需要安装系列基础工具支持库。这不仅限于 Python 解释器本身,还包括编译环境其他可能被使用的扩展模块。 对于基于 Debian 或 Ubuntu 的 Linux 发行版来说,可以利用 `apt` 包管理器来完成这过程: ```bash sudo apt update && sudo apt upgrade -y sudo apt install python3 python3-pip python3-setuptools python3-wheel git make gcc g++ cmake pkg-config libssl-dev zlib1g-dev libncurses5-dev libbz2-dev libreadline-dev libffi-dev curl wget vim htop tmux screen tree jq -y ``` 上述命令会更新现有软件包并安装组常用的开发工具 Python 开发所需的基础库[^1]。 #### 获取并配置 Python 源码 如果希望使用特定版本的 Python 而不是系统默认提供的版本,则可以从官方源获取最新稳定发布的 tarball 文件,并按照说明文档中的指导来进行本地化定制化的编译与安装工作。 访问 [Python 下载页面](https://www.python.org/downloads/) 找到想要下载的目标版本链接地址,接着通过如下方式将其部署至目标设备上: ```bash cd /usr/src/ sudo wget https://www.python.org/ftp/python/X.X.X/Python-X.X.X.tgz # 将 X.X.X 替换成具体版本号 sudo tar xzf Python-X.X.X.tgz cd Python-X.X.X/ ./configure --enable-optimizations --with-lto --prefix=/opt/pythonX.X # 设置合适的前缀路径 make altinstall # 使用 altinstall 可防止覆盖系统的默认 python 版本 ``` 这里需要注意的是,在 Rockchip 提供的标准固件环境中,默认情况下并没有预装过高版本的 Python 解释器,因此建议采用这种方式自行构建适合项目需求的最佳实践方案。 #### 创建虚拟环境以隔离不同项目的依赖关系 当多个应用程序共存时,为了避免它们之间因第三方库的不同而引发冲突问题,推荐为每个独立的应用创建专属的工作区——即所谓的“虚拟环境”。这样做的好处是可以针对各个应用单独管理各自的 pip 包集合而不影响全局设置或其他项目。 假设已经完成了前面提到的新版 Python 编译安装步骤,现在就可以很方便地借助新解释器自带的支持特性快速搭建起这样的沙盒空间了: ```bash /opt/pythonX.X/bin/python3 -m venv myproject_venv # 生成名为 'myproject_venv' 的目录作为新的 VE 根节点 source ./myproject_venv/bin/activate # 启动当前 shell session 中对该 VE 的支持状态 pip install --upgrade pip # 升级内部 PIP 工具链以便更好地兼容后续操作 deactivate # 结束本次交互式的 VE 使用场景返回正常模式 ``` 每次进入该工程之前都需要重复激活指令,这样才能保证所执行的所有 PyPI 包加载行为都限定在此范围内发生而不是污染到了其他地方。 #### 整合 NPU 支持功能 考虑到 RK3588 自带强大的神经网络处理单元 (Neural Processing Unit),为了让 Python 程序能够充分利用这部分硬件加速能力,还需要额外引入由芯片厂商提供的专用接口文件 `librknn_api.so` 来桥接高层 API 底层驱动层之间的通信渠道[^2]。 通常做法是在项目的 setup.py 或 requirements.txt 文档里指定此类 CFFI 绑定形式的外部资源位置,或者干脆直接将共享对象拷贝进 site-packages 子目录下让 import 机制自动识别出来即可满足基本调用诉求。 #### 实现 YOLOv5 推理流程适配 最后步则是围绕着具体的 AI 计算任务展开讨论,比如怎样把流行的物体检测框架移植过来并在嵌入式平台上高效运作起来?根据先前分享过的经验贴士可知,关键在于理解模型预期接收的数据格式及其对应的转换逻辑[^3]。 对于YOLOv5而言,这意味着要准备好符合其输入尺寸规格(通常是640x640像素)的图像样本集,并编写相应的预处理器负责调整原始素材使之匹配算法要求;与此同时还要设计好后置解析环节用于提取预测框坐标信息以及其他有用元数据字段,从而形成完整的端到端解决方案链条。
评论 46
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

紫川宁520

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值