多项式回归

30 篇文章 5 订阅
11 篇文章 2 订阅

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


第二章知识补充: 多项式回归

我们在前面讲的都是一般线性回归,即使用的假设函数是一元一次方程,也就是二维平面上的一条直线。

但是很多时候可能会遇到直线方程无法很好的拟合数据的情况,这个时候可以尝试使用多项式回归。

多项式回归中,加入了特征的更高次方(例如平方项或立方项),也相当于增加了模型的自由度,用来捕获数据中非线性的变化。添加高阶项的时候,也增加了模型的复杂度。随着模型复杂度的升高,模型的容量以及拟合数据的能力增加,可以进一步降低训练误差,但导致过拟合的风险也随之增加(后面会专门讨论出现过拟合的情况)。

1 多项式回归的一般形式

在多项式回归中,最重要的参数是最高次方的次数。设最高次方的次数为n,且只有一个特征时,其多项式回归的方程为:

 

其中𝑋是大小为m⋅(n+1)的矩阵,θ是大小为(n+1)⋅1的矩阵。

在这里虽然只有一个特征x以及x的不同次方,但是也可以将x的高次方当做一个新特征。与多元回归分析唯一不同的是,这些特征之间是高度相关的,而不是通常要求的那样是相互对立的。

在这里有个问题在刚开始学习线性回归的时候困扰了自己很久:如果假设中出现了高阶项,那么这个模型还是线性模型吗?此时看待问题的角度不同,得到的结果也不同。如果把上面的假设看成是特征xx的方程,那么该方程就是非线性方程;如果看成是参数𝜃θ的方程,那么xx的高阶项都可以看做是对应𝜃θ的参数,那么该方程就是线性方程。很明显,在线性回归中采用了后一种解释方式。因此多项式回归仍然是参数的线性模型。

2 多项式回归的实现

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

# 构造数据,数据可视化展示
data = np.array([[ -2.95507616,  10.94533252],
                 [ -0.44226119,   2.96705822],
                 [ -2.13294087,   6.57336839],
                 [  1.84990823,   5.44244467],
                 [  0.35139795,   2.83533936],
                 [ -1.77443098,   5.6800407 ],
                 [ -1.8657203 ,   6.34470814],
                 [  1.61526823,   4.77833358],
                 [ -2.38043687,   8.51887713],
                 [ -1.40513866,   4.18262786]])

X = data[:, 0].reshape(-1, 1)  # 将array转换成矩阵
y = data[:, 1].reshape(-1, 1)

plt.plot(X, y, "b.")
plt.xlabel('X')
plt.ylabel('y')
plt.show()

2.1 直线方程的拟合

下面先用直线方程拟合上面的数据点:

lin_reg = LinearRegression()
lin_reg.fit(X, y)
print(lin_reg.intercept_, lin_reg.coef_)  # [ 4.97857827] [[-0.92810463]]

X_plot = np.linspace(-3, 3, 1000).reshape(-1, 1)

# 可以使用两种方法用于模型预测
# y_plot = np.dot(X_plot, lin_reg.coef_.T) + lin_reg.intercept_
y_plot = lin_reg.predict(X_plot)

plt.plot(X_plot, y_plot,"red")
plt.plot(X, y, 'b.')
plt.xlabel('X')
plt.ylabel('y')

# 使用mse衡量其误差值:
y_pre = lin_reg.predict(X)
mean_squared_error(y, y_pre)
# 3.3363076332788495

2.2 使用多项式方程

sklearn 的 PolynomialFeatures 的用法

官方文档链接

X = np.arange(6).reshape(3, 2)
X

# 输出结果
array([[0, 1],
       [2, 3],
       [4, 5]])

from sklearn.preprocessing import PolynomialFeatures
# 设置多项式阶数为2,其他值默认
# degree 多项式阶数
poly = PolynomialFeatures(degree=2)
res = poly.fit_transform(X)
res

# 输出结果
array([[ 1.,  0.,  1.,  0.,  0.,  1.],
       [ 1.,  2.,  3.,  4.,  6.,  9.],
       [ 1.,  4.,  5., 16., 20., 25.]])

使用函数"PolynomialFeatures"获取二次方项:

poly_features = PolynomialFeatures(degree=2, include_bias=False)
X_poly = poly_features.fit_transform(X)
print(X_poly)

# 输出结果
[[-2.95507616  8.73247511]
 [-0.44226119  0.19559496]
 [-2.13294087  4.54943675]
 [ 1.84990823  3.42216046]
 [ 0.35139795  0.12348052]
 [-1.77443098  3.1486053 ]
 [-1.8657203   3.48091224]
 [ 1.61526823  2.60909145]
 [-2.38043687  5.66647969]
 [-1.40513866  1.97441465]]

利用上面的数据做线性回归分析:

lin_reg = LinearRegression()
lin_reg.fit(X_poly, y)
print(lin_reg.intercept_, lin_reg.coef_)  
# [ 2.60996757] [[-0.12759678  0.9144504 ]]

X_plot = np.linspace(-3, 3, 1000).reshape(-1, 1)
X_plot_poly = poly_features.fit_transform(X_plot)
y_plot = lin_reg.predict(X_plot_poly)
plt.plot(X_plot, y_plot, 'red')
plt.plot(X, y, 'b.')
plt.show()

# 使用mse衡量其误差值:
y_pre = lin_reg.predict(X_poly)
mean_squared_error(y, y_pre)
# 0.07128562789085331

利用多项式回归,代价函数MSE的值下降到了0.07。

3 持续降低训练误差与过拟合

在上面实现多项式回归的过程中,通过引入高阶项x2,训练误差从3.34下降到了0.07,减小了将近50倍。那么训练误差是否还有进一步下降的空间呢?

下面是测试不同degree的过程:

# 定义模型训练函数
def try_degree(degree, X, y):
    poly_features_d = PolynomialFeatures(degree=degree, include_bias=False)
    X_poly_d = poly_features_d.fit_transform(X)
    lin_reg_d = LinearRegression()
    lin_reg_d.fit(X_poly_d, y)
    return {'X_poly': X_poly_d, 'intercept': lin_reg_d.intercept_, 'coef': lin_reg_d.coef_}

degree2loss_paras = []
for i in range(2, 20):
    paras = try_degree(i, X, y)

    # 自己实现预测值的求解
    h = np.dot(paras['X_poly'], paras['coef'].T) + paras['intercept']
    _loss = mean_squared_error(h, y)
    degree2loss_paras.append({'d': i, 'loss': _loss, 'coef': paras['coef'], 'intercept': paras['intercept']})

查看最小模型参数:

min_index = np.argmin(np.array([i['loss'] for i in degree2loss_paras]))
min_loss_para = degree2loss_paras[min_index]
print(min_loss_para)

# 输出结果
{'d': 12, 
 'loss': 3.8764202841976227e-23, 
 'coef': array([[ 1.17159189,  8.60674192, -4.91798703, -4.18378115,  3.79426131, -8.56026107, -6.94465715,  5.03891035,  4.08870088, -0.30369348, -0.6635493 , -0.11314395]]), 
 'intercept': array([1.63695924])}

对最小模型可视化展示:

X_plot = np.linspace(-3, 1.9, 1000).reshape(-1, 1)
poly_features_d = PolynomialFeatures(degree=min_loss_para['d'], include_bias=False)

X_plot_poly = poly_features_d.fit_transform(X_plot)
y_plot = np.dot(X_plot_poly, min_loss_para['coef'].T) + min_loss_para['intercept']


plt.plot(X_plot, y_plot, 'red', label="degree12")
plt.plot(X, y, 'b.', label="X")
plt.legend(loc='best')
plt.show()

此时函数图像穿过了每一个样本点,所有的训练样本都落在了拟合的曲线上,训练误差接近与0。 可以说是近乎完美的模型了。但是,这样的曲线与我们最开始数据的来源(一个二次方程加上一些随机误差)差异非常大。

如果从相同来源再取一些样本点,使用该模型预测会出现非常大的误差。类似这种训练误差非常小,但是新数据点的测试误差非常大的情况,就叫做模型的过拟合。过拟合出现时,表示模型过于复杂,过多考虑了当前样本的特殊情况以及噪音(模型学习到了当前训练样本非全局的特性),使得模型的泛化能力下降。

防止模型过拟合是机器学习领域里最重要的问题之一。鉴于该问题的普遍性和重要性,在满足要求的情况下,能选择简单模型时应该尽量选择简单的模型。

  • 0
    点赞
  • 13
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

あずにゃん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值