目标估计模型-卡尔曼滤波

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


CNN:RCNN、SPPNet、Fast RCNN、Faster RCNN、YOLO V1 V2 V3、SSD、FCN、SegNet、U-Net、DeepLab V1 V2 V3、Mask RCNN

自动驾驶:车道线检测、车速检测、实时通行跟踪、基于视频的车辆跟踪及流量统计

车流量检测实现:多目标追踪、卡尔曼滤波器、匈牙利算法、SORT/DeepSORT、yoloV3、虚拟线圈法、交并比IOU计算

多目标追踪:DBT、DFT、基于Kalman和KM算法的后端优化算法、SORT/DeepSORT、基于多线程的单目标跟踪的多目标跟踪算法KCF

计算交并比IOU、候选框不同表示方式之间的转换

卡尔曼滤波器

卡尔曼滤波器实践

目标估计模型-卡尔曼滤波

匈牙利算法

数据关联:利用匈牙利算法对目标框和检测框进行关联

SORT、DeepSORT

多目标追踪

yoloV3模型

基于yoloV3的目标检测

叉乘:基于虚拟线圈法的车流量统计

视频中的车流量统计


4.4. 目标估计模型-卡尔曼滤波

学习目标

  • 了解卡尔曼滤波器中的状态变量和观测输入
  • 了解目标框的状态更新向量
  • 了解预测边界框的估计

在这里我们主要完成卡尔曼滤波器进行跟踪的相关内容的实现。

  • 初始化:卡尔曼滤波器的状态变量和观测输入
  • 更新状态变量
  • 根据状态变量预测目标的边界框
  1. 初始化:

    状态量x的设定是一个七维向量:

分别表示目标中心位置的x,y坐标,面积s和当前目标框的纵横比,最后三个则是横向,纵向,面积的变化速率,其中速度部分初始化为0,其他根据观测进行输入。

初始化卡尔曼滤波器参数,7个状态变量和4个观测输入,运动形式和转换矩阵的确定都是基于匀速运动模型,状态转移矩阵F根据运动学公式确定:

量测矩阵H是4*7的矩阵,将观测值与状态变量相对应:

以及相应的协方差参数的设定,根据经验值进行设定。

       def __init__(self, bbox):
           # 定义等速模型
           # 内部使用KalmanFilter,7个状态变量和4个观测输入
           self.kf = KalmanFilter(dim_x=7, dim_z=4)
           # F是状态变换模型,为7*7的方阵
           self.kf.F = np.array(
               [[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
                [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
           # H是量测矩阵,是4*7的矩阵
           self.kf.H = np.array(
               [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
           # R是测量噪声的协方差,即真实值与测量值差的协方差
           self.kf.R[2:, 2:] *= 10.
           # P是先验估计的协方差
           self.kf.P[4:, 4:] *= 1000.  # give high uncertainty to the unobservable initial velocities
           self.kf.P *= 10.
           # Q是过程激励噪声的协方差
           self.kf.Q[-1, -1] *= 0.01
           self.kf.Q[4:, 4:] *= 0.01
           # 状态估计
           self.kf.x[:4] = convert_bbox_to_z(bbox)
           # 参数的更新
           self.time_since_update = 0
           self.id = KalmanBoxTracker.count
           KalmanBoxTracker.count += 1
           self.history = []
           self.hits = 0
           self.hit_streak = 0
           self.age = 0
  1. 更新状态变量

    使用观测到的目标框更新状态变量

 def update(self, bbox):
        # 重置
        self.time_since_update = 0
        # 清空history
        self.history = []
        # hits计数加1
        self.hits += 1
        self.hit_streak += 1
        # 根据观测结果修改内部状态x
        self.kf.update(convert_bbox_to_z(bbox))
  1. 进行目标框的预测

    推进状态变量并返回预测的边界框结果

    def predict(self):
        # 推进状态变量
        if (self.kf.x[6] + self.kf.x[2]) <= 0:
            self.kf.x[6] *= 0.0
        # 进行预测
        self.kf.predict()
        # 卡尔曼滤波的次数
        self.age += 1
        # 若过程中未更新过,将hit_streak置为0
        if self.time_since_update > 0:
            self.hit_streak = 0
        self.time_since_update += 1
        # 将预测结果追加到history中
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

整个代码如下所示:

class KalmanBoxTracker(object):
    count = 0

    def __init__(self, bbox):
        """
        初始化边界框和跟踪器
        :param bbox:
        """
        # 定义等速模型
        # 内部使用KalmanFilter,7个状态变量和4个观测输入
        self.kf = KalmanFilter(dim_x=7, dim_z=4)
        self.kf.F = np.array(
            [[1, 0, 0, 0, 1, 0, 0], [0, 1, 0, 0, 0, 1, 0], [0, 0, 1, 0, 0, 0, 1], [0, 0, 0, 1, 0, 0, 0],
             [0, 0, 0, 0, 1, 0, 0], [0, 0, 0, 0, 0, 1, 0], [0, 0, 0, 0, 0, 0, 1]])
        self.kf.H = np.array(
            [[1, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0], [0, 0, 1, 0, 0, 0, 0], [0, 0, 0, 1, 0, 0, 0]])
        self.kf.R[2:, 2:] *= 10.
        self.kf.P[4:, 4:] *= 1000.  # give high uncertainty to the unobservable initial velocities
        self.kf.P *= 10.
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01
        self.kf.x[:4] = convert_bbox_to_z(bbox)
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0

    def update(self, bbox):
        """
        使用观察到的目标框更新状态向量。filterpy.kalman.KalmanFilter.update 会根据观测修改内部状态估计self.kf.x。
        重置self.time_since_update,清空self.history。
        :param bbox:目标框
        :return:
        """
        self.time_since_update = 0
        self.history = []
        self.hits += 1
        self.hit_streak += 1
        self.kf.update(convert_bbox_to_z(bbox))

    def predict(self):
        """
        推进状态向量并返回预测的边界框估计。
        将预测结果追加到self.history。由于 get_state 直接访问 self.kf.x,所以self.history没有用到
        :return:
        """
        if (self.kf.x[6] + self.kf.x[2]) <= 0:
            self.kf.x[6] *= 0.0
        self.kf.predict()
        self.age += 1
        if self.time_since_update > 0:
            self.hit_streak = 0
        self.time_since_update += 1
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

    def get_state(self):
        """
        返回当前边界框估计值
        :return:
        """
        return convert_x_to_bbox(self.kf.x)

总结

  1. 了解初始化,卡尔曼滤波器的状态变量和观测输入

  2. 更新状态变量update()

  3. 根据状态变量预测目标的边界框predict()


from filterpy.kalman import KalmanFilter
import numpy as np

def convert_bbox_to_z(bbox):
    """
    将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r]。
    其中x、y是框的中心坐标点,s 是面积尺度,r 是宽高比w/h
    :param bbox: [x1,y1,x2,y2] 分别是左上角坐标和右下角坐标 即 [左上角的x坐标,左上角的y坐标,右下角的x坐标,右下角的y坐标]
    :return: [ x, y, s, r ] 4行1列,其中x、y是box中心位置的坐标,s是面积,r是纵横比w/h
    """
    w = bbox[2] - bbox[0] #右下角的x坐标 - 左上角的x坐标 = 检测框的宽
    h = bbox[3] - bbox[1] #右下角的y坐标 - 左上角的y坐标 = 检测框的高
    x = bbox[0] + w / 2.  #左上角的x坐标 + 宽/2 = 检测框中心位置的x坐标
    y = bbox[1] + h / 2.  #左上角的y坐标 + 高/2 = 检测框中心位置的y坐标
    s = w * h   #检测框的宽 * 高 = 检测框面积
    r = w / float(h) #检测框的宽w / 高h = 宽高比
    #因为卡尔曼滤波器的输入格式要求为4行1列,因此该[x, y, s, r]的形状要转换为4行1列再输入到卡尔曼滤波器
    return np.array([x, y, s, r]).reshape((4, 1))

"""
将候选框从中心面积的形式[x,y,s,r] 转换为 坐标的形式[x1,y1,x2,y2]
"""
def convert_x_to_bbox(x, score=None):
    """
    将[cx,cy,s,r]的目标框表示转为[x_min,y_min,x_max,y_max]的形式
    :param x:[ x, y, s, r ],其中x,y是box中心位置的坐标,s是面积,r是纵横比w/h
    :param score: 置信度
    :return:[x1,y1,x2,y2],左上角坐标和右下角坐标
    """
    """
    x[2]:s是面积,原公式s的来源为s = w * h,即检测框的宽 * 高 = 检测框面积。
    x[3]:r是纵横比w/h,原公式r的来源为r = w / float(h),即检测框的宽w / 高h = 宽高比。
    x[2] * x[3]:s*r 即(w * h) * (w / float(h)) = w^2
    sqrt(x[2] * x[3]):sqrt(w^2) = w
    """
    w = np.sqrt(x[2] * x[3]) #sqrt(w^2) = w
    h = x[2] / w #w * h / w = h
    if score is None:
        return np.array([x[0] - w / 2., #检测框中心位置的x坐标 - 宽 / 2 = 左上角的x坐标
                         x[1] - h / 2., #检测框中心位置的y坐标 - 高 / 2 = 左上角的y坐标
                         x[0] + w / 2., #检测框中心位置的x坐标 + 宽 / 2 = 右下角的x坐标
                         x[1] + h / 2.] #检测框中心位置的y坐标 + 高 / 2 = 右下角的y坐标
                        ).reshape((1, 4))
    else:
        return np.array([x[0] - w / 2.,
                         x[1] - h / 2.,
                         x[0] + w / 2.,
                         x[1] + h / 2.,
                         score]).reshape((1, 5))

"""
卡尔曼滤波器进行跟踪的相关内容的实现
    目标估计模型:
        1.根据上一帧的目标框结果来预测当前帧的目标框状态,预测边界框(目标框)的模型定义为一个等速运动/匀速运动模型。
        2.每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
          KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
          并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。  
        3.yoloV3、卡尔曼滤波器预测/更新流程步骤
            1.第一步:
                yoloV3目标检测阶段:
                    --> 1.检测到目标则创建检测目标链/跟踪目标链,反之检测不到目标则重新循环目标检测。
                    --> 2.检测目标链/跟踪目标链不为空则进入卡尔曼滤波器predict预测阶段,反之为空则重新循环目标检测。
            2.第二步:
                卡尔曼滤波器predict预测阶段:
                    连续多次预测而不进行一次更新操作,那么代表了每次预测之后所进行的“预测目标和检测目标之间的”相似度匹配都不成功,
                    所以才会出现连续多次的“预测然后相似度匹配失败的”情况,导致不会进入一次更新阶段。
                    如果一次预测然后相似度匹配成功的话,那么然后就会进入更新阶段。
                    
                    --> 1.目标位置预测
                                1.kf.predict():目标位置预测
                                2.目标框预测总次数:age+=1。
                                3.if time_since_update > 0:
                                     hit_streak = 0
                                  time_since_update += 1
                                  1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
                                  2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                                  3.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                                    就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                                    即连续预测的过程中没有执行过一次update。
                                  4.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                                    当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                                    然后才会进行time_since_update+=1;
                                    当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                                    然后继续进行time_since_update+=1。
                    --> 2.预测的目标和检测的目标之间的相似度匹配成功则进入update更新阶段,反之匹配失败则删除跟踪目标。
            3.第三步:
                卡尔曼滤波器update更新阶段:
                    如果一次预测然后“预测目标和检测目标之间的”相似度匹配成功的话,那么然后就会进入更新阶段。
                    kf.update([x,y,s,r]):使用的是通过yoloV3得到的“并且和预测框相匹配的”检测框来更新预测框。
                    
                    --> 1.目标位置信息更新到检测目标链/跟踪目标链 
                                1.目标框更新总次数:hits+=1。
                                2.history = []
                                  time_since_update = 0
                                  hit_streak += 1
                                    1.history列表用于在预测阶段保存单个目标框连续预测的多个结果,一旦执行update就会清空history列表。
                                    2.连续更新的次数,每执行update一次即进行hit_streak+=1。
                                    3.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                                    4.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                                      就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                                      即连续预测的过程中没有执行过一次update。
                                    5.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                                      当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                                      然后才会进行time_since_update+=1;
                                      当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                                      然后继续进行time_since_update+=1。
                    --> 2.目标位置修正。
                                1.kf.update([x,y,s,r]):
                                        使用观测到的目标框bbox更新状态变量x(状态更新向量x)。
                                        使用的是通过yoloV3得到的“并且和预测框相匹配的”检测框来更新卡尔曼滤波器得到的预测框。
 
    1.初始化、预测、更新
        1.__init__(bbox):
            初始化卡尔曼滤波器的状态更新向量x(状态变量x)、观测输入[x,y,s,r](通过[x1,y1,x2,y2]转化而来)、状态转移矩阵F、
            量测矩阵H(观测矩阵H)、测量噪声的协方差矩阵R、先验估计的协方差矩阵P、过程激励噪声的协方差矩阵Q。
        2.update(bbox):根据观测输入来对状态更新向量x(状态变量x)进行更新
        3.predict():根据状态更新向量x(状态变量x)更新的结果来预测目标的边界框

    2.状态变量、状态转移矩阵F、量测矩阵H(观测矩阵H)、测量噪声的协方差矩阵R、先验估计的协方差矩阵P、过程激励噪声的协方差矩阵Q
        1.状态更新向量x(状态变量x)
            状态更新向量x(状态变量x)的设定是一个7维向量:x=[u,v,s,r,u^,v^,s^]T。
            u、v分别表示目标框的中心点位置的x、y坐标,s表示目标框的面积,r表示目标框的纵横比/宽高比。
            u^、v^、s^分别表示横向u(x方向)、纵向v(y方向)、面积s的运动变化速率。
            u、v、s、r初始化:根据第一帧的观测结果进行初始化。
            u^、v^、s^初始化:当第一帧开始的时候初始化为0,到后面帧时会根据预测的结果来进行变化。
        2.状态转移矩阵F
            定义的是一个7*7的方阵(其对角线上的值都是1)。。
            运动形式和转换矩阵的确定都是基于匀速运动模型,状态转移矩阵F根据运动学公式确定,跟踪的目标假设为一个匀速运动的目标。
            通过7*7的状态转移矩阵F 乘以 7*1的状态更新向量x(状态变量x)即可得到一个更新后的7*1的状态更新向量x,
            其中更新后的u、v、s即为当前帧结果。
        3.量测矩阵H(观测矩阵H)
            量测矩阵H(观测矩阵H),定义的是一个4*7的矩阵。
            通过4*7的量测矩阵H(观测矩阵H) 乘以 7*1的状态更新向量x(状态变量x) 即可得到一个 4*1的[u,v,s,r]的估计值。
        4.测量噪声的协方差矩阵R、先验估计的协方差矩阵P、过程激励噪声的协方差矩阵Q
            1.测量噪声的协方差矩阵R:diag([1,1,10,10]T)
            2.先验估计的协方差矩阵P:diag([10,10,10,10,1e4,1e4,1e4]T)。1e4:1x10的4次方。
            3.过程激励噪声的协方差矩阵Q:diag([1,1,1,1,0.01,0.01,1e-4]T)。1e-4:1x10的-4次方。
            4.1e数字的含义
                1e4:1x10的4次方
                1e-4:1x10的-4次方
            5.diag表示对角矩阵,写作为diag(a1,a2,...,an)的对角矩阵实际表示为主对角线上的值依次为a1,a2,...,an,
              而主对角线之外的元素皆为0的矩阵。
              对角矩阵(diagonal matrix)是一个主对角线之外的元素皆为0的矩阵,常写为diag(a1,a2,...,an) 。
              对角矩阵可以认为是矩阵中最简单的一种,值得一提的是:对角线上的元素可以为 0 或其他值,对角线上元素相等的对角矩阵称为数量矩阵;
              对角线上元素全为1的对角矩阵称为单位矩阵。对角矩阵的运算包括和、差运算、数乘运算、同阶对角阵的乘积运算,且结果仍为对角阵。
"""
"""
1.跟踪器链(列表):
    实际就是多个的卡尔曼滤波KalmanBoxTracker自定义类的实例对象组成的列表。
    每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
    KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
    并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
    把每个卡尔曼滤波器(KalmanBoxTracker实例对象)都存储到跟踪器链(列表)中。
2.unmatched_detections(列表):
    1.检测框中出现新目标,但此时预测框(跟踪框)中仍不不存在该目标,
      那么就需要在创建新目标对应的预测框/跟踪框(KalmanBoxTracker类的实例对象),
      然后把新目标对应的KalmanBoxTracker类的实例对象放到跟踪器链(列表)中。
    2.同时如果因为“跟踪框和检测框之间的”两两组合的匹配度IOU值小于iou阈值,
      则也要把目标检测框放到unmatched_detections中。
3.unmatched_trackers(列表):
    1.当跟踪目标失败或目标离开了画面时,也即目标从检测框中消失了,就应把目标对应的跟踪框(预测框)从跟踪器链中删除。
      unmatched_trackers列表中保存的正是跟踪失败即离开画面的目标,但该目标对应的预测框/跟踪框(KalmanBoxTracker类的实例对象)
      此时仍然存在于跟踪器链(列表)中,因此就需要把该目标对应的预测框/跟踪框(KalmanBoxTracker类的实例对象)从跟踪器链(列表)中删除出去。
    2.同时如果因为“跟踪框和检测框之间的”两两组合的匹配度IOU值小于iou阈值,
      则也要把跟踪目标框放到unmatched_trackers中。
"""
#目标估计模型-卡尔曼滤波
class KalmanBoxTracker(object):
    """
    每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
    KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
    并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
    """
    count = 0 #类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象

    """
    __init__(bbox)
        使用目标框bbox为卡尔曼滤波的状态进行初始化。初始化时传入bbox,即根据观测到的检测框的结果来进行初始化。
        每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
        KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
        并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
        
        1.kf = KalmanFilter(dim_x=7, dim_z=4)
                定义一个卡尔曼滤波器,利用这个卡尔曼滤波器对目标的状态进行估计。
                dim_x=7定义是一个7维的状态更新向量x(状态变量x):x=[u,v,s,r,u^,v^,s^]T。
                dim_z=4定义是一个4维的观测输入,即中心面积的形式[x,y,s,r],即[检测框中心位置的x坐标,y坐标,面积,宽高比]。
        2.kf.F = np.array(7*7的方阵)
                状态转移矩阵F,定义的是一个7*7的方阵其(对角线上的值都是1)。
                通过7*7的状态转移矩阵F 乘以 7*1的状态更新向量x(状态变量x)即可得到一个更新后的7*1的状态更新向量x,
                其中更新后的u、v、s即为当前帧结果。
                通过状态转移矩阵对当前的观测结果进行估计获得预测的结果,然后用当前的预测的结果来作为下一次估计预测的基础。
        3.kf.H = np.array(4*7的矩阵)
                量测矩阵H(观测矩阵H),定义的是一个4*7的矩阵。
                通过4*7的量测矩阵H(观测矩阵H) 乘以 7*1的状态更新向量x(状态变量x) 即可得到一个 4*1的[u,v,s,r]的估计值。
        4.相应的协方差参数的设定,根据经验值进行设定。
                1.R是测量噪声的协方差矩阵,即真实值与测量值差的协方差。
                  R=diag([1,1,10,10]T)
                        kf.R[2:, 2:] *= 10.
                2.P是先验估计的协方差矩阵
                  diag([10,10,10,10,1e4,1e4,1e4]T)。1e4:1x10的4次方。
                        kf.P[4:, 4:] *= 1000.  # 设置了一个较大的值,给无法观测的初始速度带来很大的不确定性
                        kf.P *= 10.
                3.Q是过程激励噪声的协方差矩阵
                  diag([1,1,1,1,0.01,0.01,1e-4]T)。1e-4:1x10的-4次方。
                        kf.Q[-1, -1] *= 0.01
                        kf.Q[4:, 4:] *= 0.01
        5.kf.x[:4] = convert_bbox_to_z(bbox)
                convert_bbox_to_z负责将[x1,y1,x2,y2]形式的检测框bbox转为中心面积的形式[x,y,s,r]。
                状态更新向量x(状态变量x)设定是一个七维向量:x=[u,v,s,r,u^,v^,s^]T。
                x[:4]即表示 u、v、s、r初始化为第一帧bbox观测到的结果[x,y,s,r]。
        6.单个目标框对应的单个卡尔曼滤波器中的统计参数的更新
            每个目标框都有对应的一个卡尔曼滤波器(KalmanBoxTracker实例对象),
            KalmanBoxTracker类中的实例属性专门负责记录其对应的一个目标框中各种统计参数,
            并且使用类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象)。
            1.卡尔曼滤波器的个数
                有多少个目标框就有多少个卡尔曼滤波器,每个目标框都会有一个卡尔曼滤波器,即每个目标框都会有一个KalmanBoxTracker实例对象。
                count = 0:类属性负责记录卡尔曼滤波器的创建个数,增加一个目标框就增加一个卡尔曼滤波器(KalmanBoxTracker实例对象。
                id = KalmanBoxTracker.count:卡尔曼滤波器的个数,即目标框的个数。
                KalmanBoxTracker.count += 1:每增加一个目标框,即增加一个KalmanBoxTracker实例对象(卡尔曼滤波器),那么类属性count+=1。
                
            2.统计一个目标框对应的卡尔曼滤波器中各参数统计的次数
                1.age = 0:
                    该目标框进行预测的总次数。每执行predict一次,便age+=1。
                2.hits = 0:
                    该目标框进行更新的总次数。每执行update一次,便hits+=1。
                3.time_since_update = 0
                    1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
                    2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
                    3.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
                      就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
                      即连续预测的过程中没有执行过一次update。
                4.hit_streak = 0
                    1.连续更新的次数,每执行update一次即进行hit_streak+=1。
                    2.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
                      当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
                      然后才会进行time_since_update+=1;
                      当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
                      然后继续进行time_since_update+=1。
        7.history = []:
                保存单个目标框连续预测的多个结果到history列表中,一旦执行update就会清空history列表。
                将预测的候选框从中心面积的形式[x,y,s,r]转换为坐标的形式[x1,y1,x2,y2] 的bbox 再保存到 history列表中。
    """
    def __init__(self, bbox):
        # 定义等速模型
        # 内部使用KalmanFilter,7个状态变量和4个观测输入
        self.kf = KalmanFilter(dim_x=7, dim_z=4)
        # F是状态变换模型,为7*7的方阵
        self.kf.F = np.array([[1, 0, 0, 0, 1, 0, 0],
                              [0, 1, 0, 0, 0, 1, 0],
                              [0, 0, 1, 0, 0, 0, 1],
                              [0, 0, 0, 1, 0, 0, 0],
                              [0, 0, 0, 0, 1, 0, 0],
                              [0, 0, 0, 0, 0, 1, 0],
                              [0, 0, 0, 0, 0, 0, 1]])
        # H是量测矩阵,是4*7的矩阵
        self.kf.H = np.array([[1, 0, 0, 0, 0, 0, 0],
                              [0, 1, 0, 0, 0, 0, 0],
                              [0, 0, 1, 0, 0, 0, 0],
                              [0, 0, 0, 1, 0, 0, 0]])
        # R是测量噪声的协方差,即真实值与测量值差的协方差
        self.kf.R[2:, 2:] *= 10.
        # P是先验估计的协方差
        self.kf.P[4:, 4:] *= 1000.  # 给无法观测的初始速度带来很大的不确定性
        self.kf.P *= 10.
        # Q是过程激励噪声的协方差
        self.kf.Q[-1, -1] *= 0.01
        self.kf.Q[4:, 4:] *= 0.01
        # 状态估计
        self.kf.x[:4] = convert_bbox_to_z(bbox)
        # 参数的更新
        self.time_since_update = 0
        self.id = KalmanBoxTracker.count
        KalmanBoxTracker.count += 1
        self.history = []
        self.hits = 0
        self.hit_streak = 0
        self.age = 0

    """
    update(bbox):使用观测到的目标框bbox更新状态更新向量x(状态变量x)
 
    1.time_since_update = 0
            1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
            2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
            2.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
              就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
              即连续预测的过程中没有执行过一次update。
    2.history = []      
           清空history列表。
           history列表保存的是单个目标框连续预测的多个结果([x,y,s,r]转换后的[x1,y1,x2,y2]),一旦执行update就会清空history列表。
    3.hits += 1:
            该目标框进行更新的总次数。每执行update一次,便hits+=1。
    4.hit_streak += 1
            1.连续更新的次数,每执行update一次即进行hit_streak+=1。
            2.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
              当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
              然后才会进行time_since_update+=1;
              当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
              然后继续进行time_since_update+=1。
    5.kf.update(convert_bbox_to_z(bbox))
            convert_bbox_to_z负责将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r],那么传入的为kf.update([x,y,s,r])。
            然后根据观测结果修改内部状态x(状态更新向量x)。
            使用的是通过yoloV3得到的“并且和预测框相匹配的”检测框来更新卡尔曼滤波器得到的预测框。
    """
    #更新状态变量,使用观测到的目标框bbox更新状态变量
    def update(self, bbox):
        """
        使用观察到的目标框更新状态向量。filterpy.kalman.KalmanFilter.update 会根据观测修改内部状态估计self.kf.x。
        重置self.time_since_update,清空self.history。
        :param bbox:目标框
        :return:
        """
        # 重置
        self.time_since_update = 0
        # 清空history
        self.history = []
        # hits计数加1
        self.hits += 1
        self.hit_streak += 1
        # 根据观测结果修改内部状态x。
        #convert_bbox_to_z负责将[x1,y1,x2,y2]形式的检测框转为滤波器的状态表示形式[x,y,s,r],那么update传入的为(x,y,s,r)
        self.kf.update(convert_bbox_to_z(bbox))

    """
    predict:进行目标框的预测并返回预测的边界框结果
    
    1.if(kf.x[6] + kf.x[2]) <= 0:
            self.kf.x[6] *= 0.0
            状态更新向量x(状态变量x)为[u,v,s,r,u^,v^,s^]T,那么x[6]为s^,x[2]为s。
            如果x[6]+x[2]<= 0,那么x[6] *= 0.0,即把s^置为0.0。
    2.kf.predict()
            进行目标框的预测。
    3.age += 1
            该目标框进行预测的总次数。每执行predict一次,便age+=1。
    4.if time_since_update > 0:
        hit_streak = 0
      time_since_update += 1
            1.连续预测的次数,每执行predict一次即进行time_since_update+=1。
            2.在连续预测(连续执行predict)的过程中,一旦执行update的话,time_since_update就会被重置为0。
            3.在连续预测(连续执行predict)的过程中,只要连续预测的次数time_since_update大于0的话,
              就会把hit_streak(连续更新的次数)重置为0,表示连续预测的过程中没有出现过一次更新状态更新向量x(状态变量x)的操作,
              即连续预测的过程中没有执行过一次update。
            4.在连续更新(连续执行update)的过程中,一旦开始连续执行predict两次或以上的情况下,
              当连续第一次执行predict时,因为time_since_update仍然为0,并不会把hit_streak重置为0,
              然后才会进行time_since_update+=1;
              当连续第二次执行predict时,因为time_since_update已经为1,那么便会把hit_streak重置为0,
              然后继续进行time_since_update+=1。
    5.history.append(convert_x_to_bbox(kf.x))
            convert_x_to_bbox(kf.x):将目标框所预测的结果从中心面积的形式[x,y,s,r] 转换为 坐标的形式[x1,y1,x2,y2] 的bbox。
            history列表保存的是单个目标框连续预测的多个结果([x,y,s,r]转换后的[x1,y1,x2,y2]),一旦执行update就会清空history列表。
    6.predict 返回值:history[-1]
            把目标框当前该次的预测的结果([x,y,s,r]转换后的[x1,y1,x2,y2])进行返回输出。
    """
    #进行目标框的预测,推进状态变量并返回预测的边界框结果
    def predict(self):
        """
        推进状态向量并返回预测的边界框估计。
        将预测结果追加到self.history。由于 get_state 直接访问 self.kf.x,所以self.history没有用到
        :return:
        """
        # 推进状态变量
        if (self.kf.x[6] + self.kf.x[2]) <= 0:
            self.kf.x[6] *= 0.0
        # 进行预测
        self.kf.predict()
        # 卡尔曼滤波的次数
        self.age += 1
        # 若过程中未更新过,将hit_streak置为0
        if self.time_since_update > 0:
            self.hit_streak = 0
        self.time_since_update += 1
        # 将预测结果追加到history中
        self.history.append(convert_x_to_bbox(self.kf.x))
        return self.history[-1]

    """
    get_state():
        获取当前目标框预测的结果([x,y,s,r]转换后的[x1,y1,x2,y2])。
        return convert_x_to_bbox(kf.x):将候选框从中心面积的形式[x,y,s,r] 转换为 坐标的形式[x1,y1,x2,y2] 的bbox并进行返回输出。
        直接访问 kf.x并进行返回,所以history没有用到。
    """
    def get_state(self):
        """
        返回当前边界框估计值。
        由于 get_state 直接访问 self.kf.x,所以self.history没有用到。
        :return:
        """
        #将候选框从中心面积的形式[x,y,s,r] 转换为 坐标的形式[x1,y1,x2,y2] 的bbox
        return convert_x_to_bbox(self.kf.x)

  • 25
    点赞
  • 49
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 3
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

あずにゃん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值