卡尔曼滤波器实践

日萌社

人工智能AI:Keras PyTorch MXNet TensorFlow PaddlePaddle 深度学习实战(不定时更新)


CNN:RCNN、SPPNet、Fast RCNN、Faster RCNN、YOLO V1 V2 V3、SSD、FCN、SegNet、U-Net、DeepLab V1 V2 V3、Mask RCNN

自动驾驶:车道线检测、车速检测、实时通行跟踪、基于视频的车辆跟踪及流量统计

车流量检测实现:多目标追踪、卡尔曼滤波器、匈牙利算法、SORT/DeepSORT、yoloV3、虚拟线圈法、交并比IOU计算

多目标追踪:DBT、DFT、基于Kalman和KM算法的后端优化算法、SORT/DeepSORT、基于多线程的单目标跟踪的多目标跟踪算法KCF

计算交并比IOU、候选框不同表示方式之间的转换

卡尔曼滤波器

卡尔曼滤波器实践

目标估计模型-卡尔曼滤波

匈牙利算法

数据关联:利用匈牙利算法对目标框和检测框进行关联

SORT、DeepSORT

多目标追踪

yoloV3模型

基于yoloV3的目标检测

叉乘:基于虚拟线圈法的车流量统计

视频中的车流量统计


3.4.卡尔曼滤波器实践

学习目标

  • 了解filterpy工具包
  • 知道卡尔曼滤波的实现过程
  • 能够利用卡尔曼滤波器完成小车目标状态的预测

1.filterpy

FilterPy是一个实现了各种滤波器的Python模块,它实现著名的卡尔曼滤波粒子滤波器。我们可以直接调用该库完成卡尔曼滤波器实现。其中的主要模块包括:

  • filterpy.kalman

    该模块主要实现了各种卡尔曼滤波器,包括常见的线性卡尔曼滤波器,扩展卡尔曼滤波器等。

  • filterpy.common

    该模块主要提供支持实现滤波的各种辅助函数,其中计算噪声矩阵的函数,线性方程离散化的函数等。

  • filterpy.stats

    该模块提供与滤波相关的统计函数,包括多元高斯算法,对数似然算法,PDF及协方差等。

  • filterpy.monte_carlo

    该模块提供了马尔科夫链蒙特卡洛算法,主要用于粒子滤波。

开源代码在:

https://github.com/rlabbe/filterpy/tree/master/filterpy/kalman

我们介绍下卡尔曼滤波器的实现,主要分为预测和更新两个阶段,在进行滤波之前,需要先进行初始化:

  • 初始化

预先设定状态变量dim_x和观测变量维度dim_z、协方差矩阵P、运动形式和观测矩阵H等,一般各个协方差矩阵都会初始化为单位矩阵,根据特定的场景需要相应的设置。


def __init__(self, dim_x, dim_z, dim_u = 0, x = None, P = None,
             Q = None, B = None, F = None, H = None, R = None):
    """Kalman Filter
        Refer to http:/github.com/rlabbe/filterpy

        Method
        -----------------------------------------
         Predict        |        Update
        -----------------------------------------
                        |  K = PH^T(HPH^T + R)^-1
        x = Fx + Bu     |  y = z - Hx
        P = FPF^T + Q   |  x = x + Ky
                        |  P = (1 - KH)P
                        |  S = HPH^T + R
        -----------------------------------------
        note: In update unit, here is a more numerically stable way: P = (I-KH)P(I-KH)' + KRK'

        Parameters
        ----------
        dim_x: int
            dims of state variables, eg:(x,y,vx,vy)->4
        dim_z: int
            dims of observation variables, eg:(x,y)->2
        dim_u: int
            dims of control variables,eg: a->1
            p = p + vt + 0.5at^2
            v = v + at
            =>[p;v] = [1,t;0,1][p;v] + [0.5t^2;t]a
        """

    assert dim_x >= 1, 'dim_x must be 1 or greater'
    assert dim_z >= 1, 'dim_z must be 1 or greater'
    assert dim_u >= 0, 'dim_u must be 0 or greater'

    self.dim_x = dim_x
    self.dim_z = dim_z
    self.dim_u = dim_u

    # initialization
    # predict
    self.x = np.zeros((dim_x, 1)) if x is None else x      # state
    self.P = np.eye(dim_x)  if P is None else P            # uncertainty covariance
    self.Q = np.eye(dim_x)  if Q is None else Q            # process uncertainty for prediction
    self.B = None if B is None else B                      # control transition matrix
    self.F = np.eye(dim_x)  if F is None else F            # state transition matrix

    # update
    self.H = np.zeros((dim_z, dim_x)) if H is None else H  # Measurement function z=Hx
    self.R = np.eye(dim_z)  if R is None else R            # observation uncertainty
    self._alpha_sq = 1.                              # fading memory control
    self.z = np.array([[None] * self.dim_z]).T       # observation
    self.K = np.zeros((dim_x, dim_z))                # kalman gain
    self.y = np.zeros((dim_z, 1))                    # estimation error
    self.S = np.zeros((dim_z, dim_z))                # system uncertainty, S = HPH^T + R
    self.SI = np.zeros((dim_z, dim_z))               # inverse system uncertainty, SI = S^-1

    self.inv = np.linalg.inv
    self._mahalanobis = None                         # Mahalanobis distance of measurement
    self.latest_state = 'init'                       # last process name
  • 预测阶段

接下来进入预测环节,为了保证通用性,引入了遗忘系数α,其作用在于调节对过往信息的依赖程度,α越大对历史信息的依赖越小:

代码如下:


def predict(self, u = None, B = None, F = None, Q = None):
    """
    Predict next state (prior) using the Kalman filter state propagation equations:
                         x = Fx + Bu
                         P = fading_memory*FPF^T + Q

    Parameters
    ----------

    u : ndarray
        Optional control vector. If not `None`, it is multiplied by B
        to create the control input into the system.

    B : ndarray of (dim_x, dim_z), or None
        Optional control transition matrix; a value of None
        will cause the filter to use `self.B`.

    F : ndarray of (dim_x, dim_x), or None
        Optional state transition matrix; a value of None
        will cause the filter to use `self.F`.

    Q : ndarray of (dim_x, dim_x), scalar, or None
        Optional process noise matrix; a value of None will cause the
        filter to use `self.Q`.
    """

    if B is None:
        B = self.B
    if F is None:
        F = self.F
    if Q is None:
        Q = self.Q
    elif np.isscalar(Q):
        Q = np.eye(self.dim_x) * Q

    # x = Fx + Bu
    if B is not None and u is not None:
        self.x = F @ self.x + B @ u
    else:
        self.x = F @ self.x

    # P = fading_memory*FPF' + Q
    self.P = self._alpha_sq * (F @ self.P @ F.T) + Q
    self.latest_state = 'predict'
  • 更新阶段

按下式进行状态的更新:

也可以写为:

其中,y是测量余量,S是测量余量的协方差矩阵。

在实际应用中会做一些微调,使协方差矩阵为:

代码如下:


def update(self, z, R = None, H = None):
    """
    Update Process, add a new measurement (z) to the Kalman filter.
                K = PH^T(HPH^T + R)^-1
                y = z - Hx
                x = x + Ky
                P = (1 - KH)P or P = (I-KH)P(I-KH)' + KRK'

    If z is None, nothing is computed.

    Parameters
    ----------
    z : (dim_z, 1): array_like
        measurement for this update. z can be a scalar if dim_z is 1,
        otherwise it must be convertible to a column vector.

    R : ndarray, scalar, or None
        Optionally provide R to override the measurement noise for this
        one call, otherwise  self.R will be used.

    H : ndarray, or None
        Optionally provide H to override the measurement function for this
        one call, otherwise self.H will be used.
    """

    if z is None:
        self.z = np.array([[None] * self.dim_z]).T
        self.y = np.zeros((self.dim_z, 1))
        return

    z = reshape_z(z, self.dim_z, self.x.ndim)

    if R is None:
        R = self.R
    elif np.isscalar(R):
        R = np.eye(self.dim_z) * R

    if H is None:
        H = self.H

    if self.latest_state == 'predict':
        # common subexpression for speed
        PHT = self.P @ H.T

        # S = HPH' + R
        # project system uncertainty into measurement space
        self.S = H @ PHT + R

        self.SI = self.inv(self.S)


        # K = PH'inv(S)
        # map system uncertainty into kalman gain
        self.K = PHT @ self.SI

        # P = (I-KH)P(I-KH)' + KRK'
        # This is more numerically stable and works for non-optimal K vs
        # the equation P = (I-KH)P usually seen in the literature.
        I_KH = np.eye(self.dim_x) - self.K @ H
        self.P = I_KH @ self.P @ I_KH.T + self.K @ R @ self.K.T


    # y = z - Hx
    # error (residual) between measurement and prediction
    self.y = z - H @ self.x

    self._mahalanobis = math.sqrt(float(self.y.T @ self.SI @ self.y))

    # x = x + Ky
    # predict new x with residual scaled by the kalman gain

    self.x = self.x + self.K @ self.y
    self.latest_state = 'update'

那接下来,我们就是用filterpy中的卡尔曼滤波器方法完成小车位置的预测。

2.小车案例

现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示:

  • 导入相应的工具包
  • 小车运动数据生成
  • 参数初始化
  • 利用卡尔曼滤波进行小车状态预测
  • 可视化:观察参数的变化与结果

下面我们看下整个流程实现:

  • 导入包
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter
  • 小车运动数据生成

在这里我们假设小车作速度为1的匀速运动

# 生成1000个位置,从1到1000,是小车的实际位置
z = np.linspace(1,1000,1000) 
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise
  • 参数初始化
# dim_x 状态向量size,在该例中为[p,v],即位置和速度,size=2
# dim_z 测量向量size,假设小车为匀速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=2, dim_z=1)

# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.]])

# p 协方差矩阵,表示状态向量内位置与速度的相关性
# 假设速度与位置没关系,协方差矩阵为[[1,0],[0,1]]
my_filter.P = np.array([[1., 0.], [0., 1.]])

# F 初始的状态转移矩阵,假设为匀速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.], [0., 1.]])

# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0.], [0., 0.0001]])

# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0]])
# R 测量噪声,方差为1
my_filter.R = 1
  • 卡尔曼滤波进行预测
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波 
for k in range(len(z_nosie)):
    # 预测过程 
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    # 收集卡尔曼滤波后的速度和位置信息
    z_new_list.append(x[0][0])
    v_new_list.append(x[1][0])
  • 可视化

  • 预测误差的可视化

    # 位移的偏差
    dif_list = []
    for k in range(len(z)):
        dif_list.append(z_new_list[k]-z[k])
    # 速度的偏差
    v_dif_list = []
    for k in range(len(z)):
        v_dif_list.append(v_new_list[k]-1)
    plt.figure(figsize=(20,9))
    plt.subplot(1,2,1)
    plt.xlim(-50,1050)
    plt.ylim(-3.0,3.0)
    plt.scatter(range(len(z)),dif_list,color ='b',label = "位置偏差")
    plt.scatter(range(len(z)),v_dif_list,color ='y',label = "速度偏差")
    plt.legend()

    运行结果如下所示:

2.卡尔曼滤波器参数的变化

首先定义方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0,我们看一下参数的变化。

# 定义一个方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0 
def filter_comb(p, f, q, h, r):
        a = np.hstack((p, f))
        b = np.array([r, 0])
        b = np.vstack([h, b])
        b = np.hstack((q, b))
        a = np.vstack((a, b))
        return a

对参数变化进行可视化:

# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波 
for k in range(1):
    # 预测过程 
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    c = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)
    plt.figure(figsize=(32,18))
    sns.set(font_scale=4)
    #sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)
    sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)

对比变换:

从图中可以看出变化的P,其他的参数F,Q,H,R为变换。另外状态变量x和卡尔曼系数K也是变化的。

3.概率密度函数

为了验证卡尔曼滤波的结果优于测量的结果,绘制预测结果误差和测量误差的概率密度函数:

# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)
import seaborn as sns 
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)

结果如下:

可以看出卡尔曼滤波器预测的结果误差方差更小,优于测试的结果。


总结:

1.了解filterpy工具包

FilterPy是一个实现了各种滤波器的Python模块,它实现著名的卡尔曼滤波粒子滤波器。直接调用该库完成卡尔曼滤波器实现。

2.知道卡尔曼滤波的实现过程

卡尔曼滤波器的实现,主要分为预测和更新两个阶段,在进行滤波之前,需要先进行初始化

  • 初始化

预先设定状态变量和观测变量维度、协方差矩阵、运动形式和转换矩阵

  • 预测

对状态变量X和协方差P进行预测

  • 更新

利用观测结果对卡尔曼滤波的结果进行修征

3.能够利用卡尔曼滤波器完成小车目标状态的预测

  • 导入相应的工具包

  • 小车运动数据生成:匀速运动的小车模型

  • 参数初始化:对卡尔曼滤波的参数进行初始化,包括状态变量和观测变量维度、协方差矩阵、运动形式和转换矩阵

  • 利用卡尔曼滤波进行小车状态预测:使用Filterpy工具包,调用predict和update完成小车状态的预测

  • 可视化:观察参数的变化与结果

    1.预测误差的分布:p,v

    2.参数的变化:参数中变化的是X,P,K,不变的是F,Q,H,R

    1. 误差的概率密度函数:卡尔曼预测的结果优于测量结果

In [1]:

import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter

数据生成

In [2]:

# 生成1000个位置,从1到1000,是小车的实际位置
z = np.linspace(1,1000,1000) 
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise

参数初始化

In [8]:

# dim_x 状态向量size,在该例中为[p,v],即位置和速度,size=2
# dim_z 测量向量size,假设小车为匀速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=2, dim_z=1)
# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.]])
# p 协方差矩阵,表示状态向量内位置与速度的相关性
# 假设速度与位置没关系,协方差矩阵为[[1,0],[0,1]]
my_filter.P = np.array([[1., 0.], [0., 1.]])
# F 初始的状态转移矩阵,假设为匀速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.], [0., 1.]])
# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0.], [0., 0.0001]])
# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0]])
# R 测量噪声,方差为1
my_filter.R = 1

卡尔曼滤波

In [4]:

# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波 
for k in range(len(z_nosie)):
    # 预测过程 
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    # 收集卡尔曼滤波后的速度和位置信息
    z_new_list.append(x[0][0])
    v_new_list.append(x[1][0])

In [6]:

# 位移的偏差
dif_list = []
for k in range(len(z)):
    dif_list.append(z_new_list[k]-z[k])
# 速度的偏差
v_dif_list = []
for k in range(len(z)):
    v_dif_list.append(v_new_list[k]-1)
plt.figure(figsize=(20,9))
plt.subplot(1,2,1)
plt.xlim(-50,1050)
plt.ylim(-3.0,3.0)
plt.scatter(range(len(z)),dif_list,color ='b',label = "位置偏差")
plt.scatter(range(len(z)),v_dif_list,color ='y',label = "速度偏差")
plt.legend()

Out[6]:

<matplotlib.legend.Legend at 0x1281b7b50>

可视化

参数的变换

在卡尔曼滤波的参数中变化的是X,P,K,不变的是F,Q,H,R将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0,我们看一下参数的变化

In [7]:

# 定义一个方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0 
def filter_comb(p, f, q, h, r):
        a = np.hstack((p, f))
        b = np.array([r, 0])
        b = np.vstack([h, b])
        b = np.hstack((q, b))
        a = np.vstack((a, b))
        return a

In [9]:

c = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)
plt.figure(figsize=(32,18))
sns.set(font_scale=4)
#sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)
sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)

Out[9]:

<matplotlib.axes._subplots.AxesSubplot at 0x127db1650>

In [10]:

# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波 
for k in range(1):
    # 预测过程 
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    c = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)
    plt.figure(figsize=(32,18))
    sns.set(font_scale=4)
    #sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)
    sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)

概率密度函数

In [11]:

# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)
import seaborn as sns 
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)


小车匀速案例

"""
现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示:
    导入相应的工具包
    小车运动数据生成
    参数初始化
    利用卡尔曼滤波进行小车状态预测
    可视化:观察参数的变化与结果
"""

#导入包
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"] #支持中文显示
mpl.rcParams["axes.unicode_minus"] = False

#小车运动数据生成
#在这里我们假设小车作速度为1的匀速运动
# 生成1000个位置,从1到1000,是小车的实际位置
z = np.linspace(1,1000,1000)
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise

#参数初始化
# dim_x 状态向量size,在该例中为[p,v],即位置和速度,size=2
# dim_z 测量向量size,假设小车为匀速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=2, dim_z=1)

# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.]])

# p 协方差矩阵,表示状态向量内位置与速度的相关性
# 假设速度与位置没关系,协方差矩阵为[[1,0],[0,1]]
my_filter.P = np.array([[1., 0.], [0., 1.]])

# F 初始的状态转移矩阵,假设为匀速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.], [0., 1.]])

# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0.], [0., 0.0001]])

# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0]])
# R 测量噪声,方差为1
my_filter.R = 1

#卡尔曼滤波进行预测
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(len(z_nosie)):
    # 预测过程
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    # 收集卡尔曼滤波后的速度和位置信息
    z_new_list.append(x[0][0])
    v_new_list.append(x[1][0])

#可视化
#预测误差的可视化
# 位移的偏差
dif_list = []
for k in range(len(z)):
    dif_list.append(z_new_list[k]-z[k])
# 速度的偏差
v_dif_list = []
for k in range(len(z)):
    v_dif_list.append(v_new_list[k]-1)

plt.figure(figsize=(20,9))
plt.subplot(1,1,1)
plt.xlim(-50,1050)
plt.ylim(-3.0,3.0)
plt.scatter(range(len(z)),dif_list,color ='b',label = "位置偏差")
plt.scatter(range(len(z)),v_dif_list,color ='y',label = "速度偏差")
plt.legend()
plt.show()

#2.卡尔曼滤波器参数的变化
#首先定义方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0,我们看一下参数的变化。
# 定义一个方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0
def filter_comb(p, f, q, h, r):
        a = np.hstack((p, f))
        b = np.array([r, 0])
        b = np.vstack([h, b])
        b = np.hstack((q, b))
        a = np.vstack((a, b))
        return a

#对参数变化进行可视化:
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(1):
    # 预测过程
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    c = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)
    plt.figure(figsize=(32,18))
    sns.set(font_scale=4)
    #sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)
    sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)

#从图中可以看出变化的P,其他的参数F,Q,H,R为变换。另外状态变量x和卡尔曼系数K也是变化的。
#3.概率密度函数
#为了验证卡尔曼滤波的结果优于测量的结果,绘制预测结果误差和测量误差的概率密度函数:
# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)

import seaborn as sns
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)
plt.show()

小车匀加速案例 版本一

"""
现在利用卡尔曼滤波对小车的运动状态进行预测。主要流程如下所示:
    导入相应的工具包
    小车运动数据生成
    参数初始化
    利用卡尔曼滤波进行小车状态预测
    可视化:观察参数的变化与结果
"""

#导入包
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter
from pylab import mpl
mpl.rcParams["font.sans-serif"] = ["SimHei"] #支持中文显示
mpl.rcParams["axes.unicode_minus"] = False

# u 即 加速度a
u = 2
#小车运动数据生成
#在这里我们假设小车作加速度为2的匀加速运动
# 生成1000个位置,从1到1000,是小车的实际位置
z = np.array([0.5*u*(i**2) for i in range(1000)]) #位移距离公式:1/2 * 加速度a * 单位时间秒的平方。i相当于dt时间。
v = np.array([u*i for i in range(1000)])  #因为加速度a=dv/dt,所以dv=加速度a*dt。i相当于dt时间。
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise


#参数初始化
# dim_x 状态向量size,在该例中为[p,v],即位置和速度,size=2
# dim_z 测量向量size,假设小车为匀加速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=2, dim_z=1)

# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.]])

"""
1.u 即加速度a,亦即状态控制向量。
    加速度a=dv/dt
    m/s^2:米每二次方秒,米除以秒的二次方。
    m*s^-2:米乘以秒的负二次方,负二次方表示二次方的倒数。
2.B 即状态控制矩阵:
    状态控制矩阵的公式为[[1/2 △t^2] [△t]]。那么传入[0.5] 代表 1/2 △t^2 中的系数1/2  ,[1]就是△t中的系数1。
    △t为时间差,此处亦即为遍历位置P的间隔数(步数)作为时间差.
3.初始化位移距离、速度
    #位移距离公式:1/2 * 加速度a * 单位时间秒的平方。下面的i相当于dt时间。
    z = np.array([0.5*u*(i**2) for i in range(1000)])
    #因为加速度a=dv/dt,所以dv=加速度a*dt。下面的i相当于dt时间。
    v = np.array([u*i for i in range(1000)])
4.预测
    predict(u, B = np.array([[0.5],[1]]))
    也可以设置
    my_filter.B = np.array([[0.5],[1]])
    predict(u)
"""
# B 状态控制矩阵:[0.5] 代表 1/2 △t^2 中的系数1/2  ,[1]就是△t中的系数1。△t为时间差,此处亦即为遍历位置P的间隔数(步数)作为时间差
# my_filter.B = np.array([[0.5],[1]])

# p 协方差矩阵,表示状态向量内位置与速度的相关性
# 假设速度与位置没关系,协方差矩阵为[[1,0],[0,1]]
my_filter.P = np.array([[1., 0.], [0., 1.]])

# F 初始的状态转移矩阵,假设为匀加速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.], [0., 1.]])

# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀加速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0.], [0., 0.0001]])

# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0]])
# R 测量噪声,方差为1
my_filter.R = 1

#卡尔曼滤波进行预测
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []#位移的预测值
v_new_list = []#速度的预测值
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(len(z_nosie)):
    # 预测过程
    my_filter.predict(u, B = np.array([[0.5],[1]]))
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    # 收集卡尔曼滤波后的速度和位置信息
    z_new_list.append(x[0][0]) #位移的预测值
    v_new_list.append(x[1][0]) #速度的预测值

#可视化
#预测误差的可视化
# 位移的偏差
dif_list = []
#位移/位置(预测值,真实值))
dif_list_pair = []
for k in range(len(z)):
    dif_list.append(z_new_list[k]-z[k]) #位移的预测值 - 位移的真实值 = 位移的偏差
    dif_list_pair.append([z_new_list[k], z[k]]) #位移/位置(预测值,真实值))
# 速度的偏差
v_dif_list = []
#速度(预测值,真实值)
v_dif_list_pair = []
for k in range(len(z)):
    v_dif_list.append(v_new_list[k]-v[k]) #速度的预测值 - 速度的真实值 = 速度的偏差
    v_dif_list_pair.append([v_new_list[k],v[k]]) #速度(预测值,真实值)

print('位移/位置(预测值,真实值)):',dif_list_pair)
print('位移偏差:',dif_list)
print('速度(预测值,真实值):',v_dif_list_pair)
print('速度偏差:',v_dif_list)

plt.figure(figsize=(20,9))
plt.subplot(1,1,1)
plt.xlim(-50,1050)
plt.ylim(-3.0,3.0)
plt.scatter(range(len(z)),dif_list,color ='b',label = "位置偏差")
plt.scatter(range(len(z)),v_dif_list,color ='y',label = "速度偏差")
plt.legend()
plt.show()


plt.figure(figsize=(20, 8))
plt.xlim(-5, 100+5)
plt.ylim(-3, +5)
plt.subplot(3, 2, 1)
plt.scatter(range(len(z)), dif_list, color='b', label="位置偏差")
plt.plot(range(len(z)),[0]*len(z),color='r')
plt.legend()
plt.subplot(3, 2, 2)
plt.scatter(range(len(z)), v_dif_list, color='y', label="速度偏差")
plt.plot(range(len(z)),[0]*len(z),color='r')
plt.legend()
plt.subplot(3, 2, 3)
plt.scatter(range(len(z)), z_nosie, color='b', label="真实位置")
plt.legend()
plt.subplot(3, 2, 4)
plt.scatter(range(len(z)), v, color='y', label="真实速度")
plt.legend()
plt.subplot(3, 2, 5)
plt.scatter(range(len(z)), z_new_list, color='b', label="预测位置")
plt.legend()
plt.subplot(3, 2, 6)
plt.scatter(range(len(z)), v_new_list, color='y', label="预测速度")
plt.legend()
plt.show()

#2.卡尔曼滤波器参数的变化
#首先定义方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0,我们看一下参数的变化。
# 定义一个方法将卡尔曼滤波器的参数堆叠成一个矩阵,右下角补0
def filter_comb(p, f, q, h, r):
        a = np.hstack((p, f))
        b = np.array([r, 0])
        b = np.vstack([h, b])
        b = np.hstack((q, b))
        a = np.vstack((a, b))
        return a

#对参数变化进行可视化:
# 保存卡尔曼滤波过程中的位置和速度
z_new_list = []
v_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波
for k in range(1):
    # 预测过程
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    c = filter_comb(my_filter.P,my_filter.F,my_filter.Q,my_filter.H,my_filter.R)
    plt.figure(figsize=(32,18))
    sns.set(font_scale=4)
    #sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels==False,cbar=False)
    sns.heatmap(c,square=True,annot=True,xticklabels=False,yticklabels=False,cbar=False)

#从图中可以看出变化的P,其他的参数F,Q,H,R为变换。另外状态变量x和卡尔曼系数K也是变化的。
#3.概率密度函数
#为了验证卡尔曼滤波的结果优于测量的结果,绘制预测结果误差和测量误差的概率密度函数:
# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)

import seaborn as sns
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)
plt.show()


小车匀加速案例 版本二

import pandas as pd
from matplotlib import pyplot as plt
import seaborn as sns
import numpy as np
from filterpy.kalman import KalmanFilter
# 时间是1000s
t = np.linspace(1,10,1000) 
# 加速度值
a =10;    
# 小车位置
z =1/2*a*(t*t)
# 添加噪声
mu,sigma = 0,1
noise = np.random.normal(mu,sigma,1000)
# 小车位置的观测值
z_nosie = z+noise
# dim_x 状态向量size,在该例中为[p,v,a],即位置和速度,size=3
# dim_z 测量向量size,假设小车为匀速,速度为1,测量向量只观测位置,size=1
my_filter = KalmanFilter(dim_x=3, dim_z=1)

# 定义卡尔曼滤波中所需的参数
# x 初始状态为[0,0],即初始位置为0,速度为0.
# 这个初始值不是非常重要,在利用观测值进行更新迭代后会接近于真实值
my_filter.x = np.array([[0.], [0.], [0.]])

# p 协方差矩阵
my_filter.P = np.array([[1., 0., 0.], [0., 1., 0.], [0., 0., 1.]])

# F 初始的状态转移矩阵,假设为匀加速运动模型,可将其设为如下所示
my_filter.F = np.array([[1., 1.,0.5], [0., 1.,1.],[0., 0.,1.]])

# Q 状态转移协方差矩阵,也就是外界噪声,
# 在该例中假设小车匀速,外界干扰小,所以我们对F非常确定,觉得F一定不会出错,所以Q设的很小
my_filter.Q = np.array([[0.0001, 0., 0.], [0., 0.0001, 0.], [0., 0., 0.0001]])

# 观测矩阵 Hx = p
# 利用观测数据对预测进行更新,观测矩阵的左边一项不能设置成0
my_filter.H = np.array([[1, 0, 0]])
# R 测量噪声,方差为1
my_filter.R = 1
# 保存卡尔曼滤波过程中的位置
z_new_list = []
# 对于每一个观测值,进行一次卡尔曼滤波 
for k in range(len(z_nosie)):
    # 预测过程 
    my_filter.predict()
    # 利用观测值进行更新
    my_filter.update(z_nosie[k])
    # do something with the output
    x = my_filter.x
    # 收集卡尔曼滤波后的位置信息
    z_new_list.append(x[0][0])
    
# 位移的偏差
dif_list = []
for k in range(len(z)):
    dif_list.append(z_new_list[k]-z[k])
# 生成概率密度图像
z_noise_list_std = np.std(noise)
z_noise_list_avg = np.mean(noise)
z_filterd_list_std = np.std(dif_list)
import seaborn as sns 
plt.figure(figsize=(16,9))
ax = sns.kdeplot(noise,shade=True,color="r",label="std=%.3f"%z_noise_list_std)
ax = sns.kdeplot(dif_list,shade=True,color="g",label="std=%.3f"%z_filterd_list_std)    

  • 4
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 4
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

あずにゃん

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值